
Midterm Review (Chapters 5-6)

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Which exponential function is shown in the graph below?

a.
$$v = e^{0.5x}$$

b.
$$y = 3e^{-0.5x}$$

c.
$$v = e^{-0.5x}$$

d.
$$y = 3e^{0.5x}$$

Short Answer

2. Find the indicated real *n*th root(s) of *a*. n = 5, $\alpha = -1024$

Use the properties of rational exponents to simplify the expression.

3.
$$\left(5^{6}\right)^{1/9}$$

4.
$$\left(\frac{16^7}{28^7}\right)^{-1/7}$$

Write the expression in simplest form.

5.
$$\frac{\sqrt[4]{4}}{\sqrt[4]{9}}$$

6.
$$\frac{8}{3+\sqrt{6}}$$

Simplify the expression.

7.
$$10(5^{1/3}) - 2(5^{1/3})$$

8.
$$3(7^{1/4}) - 8(112^{1/4})$$

9.
$$\sqrt[6]{64x^{24}q^{12}}$$

Write the expression in simplest form. Assume all variables are positive.

10.
$$\sqrt[6]{64m^{21}n^{18}p^{25}}$$

11.
$$\frac{\sqrt{v^3}}{\sqrt[7]{v^6}}$$

Write a rule for g described by the transformations of the graph of f.

- 12. Let g be a reflection in the x-axis, followed by a translation 5 units up of the graph of $f(x) = 2\sqrt[3]{x-3}$.
- 13. Let g be a translation 1 unit down and 4 units left, followed by a reflection in the x-axis of the graph of $f(x) = -\frac{4}{5} \sqrt[4]{x} \frac{6}{5}$

Solve the equation. Check your solution(s).

14.
$$\sqrt{5x-9} = 9$$

15.
$$(x+33)^{1/2} = 2x$$

Find the inverse of the function.

16.
$$f(x) = -\frac{5}{6}x - \frac{1}{6}$$

Determine whether the inverse of f is a function. Then find the inverse.

17.
$$f(x) = 4x^3 - 7$$

Rewrite the equation in logarithmic form.

18.
$$9^{-2} = \frac{1}{81}$$

Evaluate the logarithm.

19.
$$\log_{1/3} 9$$

21. Simplify
$$10^{\log 14}$$
.

Find the inverse of the function.

22.
$$y = \ln(x+9)$$

23. Use
$$\log_6 7 \approx 1.086$$
 and $\log_6 4 \approx 0.774$ to evaluate $\log_6 \frac{7}{4}$.

Expand the logarithmic expression.

24.
$$\log_3 \frac{x^4}{7y}$$

25.
$$\log_7 \sqrt[4]{3x}$$

Condense the logarithmic expression.

28. Use the change-of-base formula to evaluate $\log_4 11$.

Solve the equation.

29.
$$8^{3x} = \left(\frac{1}{64}\right)^{x+5}$$

30.
$$\log_5(x-4) = 4$$

31.
$$\log_2 2x + \log_2 (x - 4) = 6$$

32.
$$\log_7(-x+8) = \log_7(-3x-4)$$

- 33. $f(x) = 4^x$; reflection in the x-axis followed by a translation 5 units right
- 34. $f(x) = \log_{1/6} x$; translation 6 units up followed by a horizontal shrink by a factor of $\frac{1}{8}$
- 35. Write an exponential function $y = ab^x$ whose graph passes through (1, 3) and (2, 15)