Midterm Review (Chapters 5-6)

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Which exponential function is shown in the graph below?

a. $y=e^{0.5 x}$
b. $y=3 e^{-0.5 x}$
c. $y=e^{-0.5 x}$
d. $y=3 e^{0.5 x}$

Short Answer

2. Find the indicated real nth root(s) of a.
$n=5, a=-1024$
Use the properties of rational exponents to simplify the expression.
3. $\left(5^{6}\right)^{1 / 9}$
4. $\left(\frac{16^{7}}{28^{7}}\right)^{-1 / 7}$

Write the expression in simplest form.
5. $\frac{\sqrt[4]{4}}{\sqrt[4]{9}}$
6. $\frac{8}{3+\sqrt{6}}$

Simplify the expression.
7. $10\left(5^{1 / 3}\right)-2\left(5^{1 / 3}\right)$
8. $3\left(7^{1 / 4}\right)-8\left(112^{1 / 4}\right)$
9. $\sqrt[6]{64 x^{24} q^{12}}$

Write the expression in simplest form. Assume all variables are positive.
10. $\sqrt[6]{64 m^{21} n^{18} p^{25}}$
11. $\frac{\sqrt{v^{3}}}{\sqrt[7]{v^{6}}}$

Write a rule for g described by the transformations of the graph of f.
12. Let g be a reflection in the x-axis, followed by a translation 5 units up of the graph of $f(x)=2 \sqrt[3]{x-3}$.
13. Let g be a translation 1 unit down and 4 units left, followed by a reflection in the x-axis of the graph of $f(x)=-\frac{4}{5} \sqrt[4]{x}-\frac{6}{5}$

Solve the equation. Check your solution(s).
14. $\sqrt{5 x-9}=9$
15. $(x+33)^{1 / 2}=2 x$

Find the inverse of the function.
16. $f(x)=-\frac{5}{6} x-\frac{1}{6}$

Determine whether the inverse of f is a function. Then find the inverse.
17. $f(x)=4 x^{3}-7$

Rewrite the equation in logarithmic form.
18. $9^{-2}=\frac{1}{81}$

Evaluate the logarithm.
19. $\log _{1 / 3} 9$
20. $\log _{64} 8$
21. Simplify $10^{\log 14}$.

Find the inverse of the function.
22. $y=\ln (x+9)$
23. Use $\log _{6} 7 \approx 1.085$ and $\log _{6} 4 \approx 0.774$ to evaluate $\log _{6} \frac{7}{4}$.

Expand the logarithmic expression.
24. $\log _{3} \frac{x^{4}}{7 y}$
25. $\log _{7} \sqrt[4]{3 x}$

Condense the logarithmic expression.
26. $\ln 6+7 \ln 2-\ln 4$
27. $6 \log 2-5 \log x$
28. Use the change-of-base formula to evaluate $\log _{4} 11$.

Solve the equation.
29. $8^{3 x}=\left(\frac{1}{64}\right)^{x+5}$
30. $\log _{5}(x-4)=4$
31. $\log _{2} 2 x+\log _{2}(x-4)=6$
32. $\log _{7}(-x+8)=\log _{7}(-3 x-4)$
33. $f(x)=4^{x}$; reflection in the x-axis followed by a translation 5 units right
34. $f(x)=\log _{1 / 6} x$; translation 6 units up followed by a horizontal shrink by a factor of $\frac{1}{8}$
35. Write an exponential function $y=a b^{x}$ whose graph passes through $(1,3)$ and $(2,15)$

