Algebra 2 - Semester 2 Final Review (Ch. 5-9)

Short Answer

Use the properties of rational exponents to simplify the expression.

1.
$$\frac{16^{2/5} \bullet 8^{2/5}}{4^{2/5}}$$

Use the properties of radicals to simplify the expression.

2.
$$\frac{\sqrt[4]{2304}}{\sqrt[4]{9}}$$

Write the expression in simplest form.

$$3. \quad \frac{\sqrt[3]{4}}{\sqrt[3]{5}}$$

4.
$$\frac{8}{6+\sqrt{7}}$$

Simplify the expression.

5.
$$19(2^{1/3}) - 6(2^{1/3})$$

Write the expression in simplest form. Assume all variables are positive.

6.
$$\sqrt[6]{64r^{25}s^{18}t^{17}}$$

Perform the indicated operation. Assume all variables are positive.

Write a rule for g described by the transformations of the graph of f.

8. Let g be a vertical stretch by a factor of 5, followed by a translation 4 units up of the graph of $f(x) = \sqrt{x-1}$.

Solve the equation. Check your solution(s).

9.
$$\sqrt{-3x+55} = x-9$$

Find the inverse of the function. Then graph the function and its inverse.

10.
$$f(x) = \frac{1}{5}x + 1$$

Simplify the expression.

11.
$$(6e^{-5x})^2$$

Rewrite the equation in logarithmic form.

- 12. $5^{-2} = \frac{1}{25}$
- 13. Simplify $e^{\ln 14}$.
- 14. $y = \ln(x-2)$
- 15. Use $\log_7 8 \approx 1.069$ and $\log_7 5 \approx 0.827$ to evaluate $\log_7 \frac{8}{5}$.

Expand the logarithmic expression.

16. $\log_6 \sqrt[4]{7x}$

Condense the logarithmic expression.

17. $\log_{7} 2 + 2\log_{7} 6 - \log_{7} 9$

Solve the equation.

18.
$$16^x = \left(\frac{1}{4}\right)^{x+3}$$

19. $\log_4 2x + \log_4 (x - 2) = 2$

Write the first six terms of the sequence.

$$20. \quad \alpha_n = \frac{4n}{n+5}$$

Describe the pattern, write the next term, and write a rule for the *n*th term of the sequence.

21. -15, -24, -33, -42,...

Find the sum.

22.
$$\sum_{i=1}^{4} -3(2)^{i-1}$$

23. Write a rule for the *n*th term of the sequence. Then find α_{13} . -6, -4, -2, 0, ...

Write a rule for the *n*th term of the arithmetic sequence.

- 24. $a_{16} = 65, a_{19} = 81$
- 25. Write a rule for the *n*th term of the sequence. Find α_6 . 8, -32, 128, -512

Write a rule for the *n*th term of the geometric sequence.

26. $\alpha_2 = 12, \ \alpha_5 = 96$

Simplify.

27.
$$\frac{x^2 - 13x + 40}{x^2 - 10x + 25}$$

$$28. \quad \frac{7x^4 - 9x^3}{12x^4}$$

29. Graph $g(x) = \frac{2}{1+x} - 1$. State the domain and range.

Find the product.

30.
$$\frac{x+9}{x^2+7x-18} \cdot (x^2+5x-14)$$

31.
$$\frac{x^5(x+10)}{(x+5)} \bullet \frac{(x+5)(x-6)}{7x^6}$$

Find the quotient.

32.
$$\frac{-10x}{x^2 - 11x + 28} \div \frac{90x - 10x^2}{x^2 - 16x + 63}$$

Find the sum or difference.

33.
$$\frac{x+2}{2x+10} - \frac{-2x+8}{x^2+x-20}$$

$$34. \quad \frac{18}{13x^2 + 4} + \frac{26}{13x^2 + 4}$$

Solve the equation.

35.
$$\frac{2}{2+x} = \frac{9}{5x+7}$$

36.
$$1 - \frac{4}{x+9} = \frac{7}{x}$$

- 37. Identify the period of $g(x) = \cos 5x$. Then graph the function and describe the graph of g as a transformation of the graph of $f(x) = \cos x$.
- 38. In a right triangle, θ is an acute angle and $\tan \theta = \frac{5}{4}$. Evaluate $\cos \theta$ and $\sin \theta$.
- 39. Draw an angle that measures -280° in standard position.
- 40. Let (-4,3) be a point on the terminal side of an angle θ in standard position. Evaluate sine, cosine and tangent of θ .
- 41. Convert $-\frac{7\pi}{10}$ to degrees.
- 42. Solve $\triangle DEF$.

- 43. Find the reference angle θ' for $\theta = 329^\circ$.
- 44. Graph $g(x) = 4\sin 3x + 3$.
- 45. Convert 35° to radians