Algebra 2 - Semester 2 Final Review (Ch. 5-9)

Short Answer

Use the properties of rational exponents to simplify the expression.

1. $\frac{16^{2 / 5} \cdot 8^{2 / 5}}{4^{2 / 5}}$

Use the properties of radicals to simplify the expression.
2. $\frac{\sqrt[4]{2304}}{\sqrt[4]{9}}$

Write the expression in simplest form.
3. $\frac{\sqrt[3]{4}}{\sqrt[3]{5}}$
4. $\frac{8}{6+\sqrt{7}}$

Simplify the expression.
5. $19\left(2^{1 / 3}\right)-6\left(2^{1 / 3}\right)$

Write the expression in simplest form. Assume all variables are positive.
6. $\sqrt[6]{64 r^{25} s^{18} t^{17}}$

Perform the indicated operation. Assume all variables are positive.
7. $11 \sqrt[4]{n}-6 \sqrt[4]{n}$

Write a rule for \boldsymbol{g} described by the transformations of the graph of \boldsymbol{f}.
8. Let g be a vertical stretch by a factor of 5 , followed by a translation 4 units up of the graph of $f(x)=\sqrt{x}-1$.

Solve the equation. Check your solution(s).
9. $\sqrt{-3 x+55}=x-5$

Find the inverse of the function. Then graph the function and its inverse.
10. $f(x)=\frac{1}{5} x+1$

Simplify the expression.
11. $\left(6 e^{-5 x}\right)^{2}$

Rewrite the equation in logarithmic form.
12. $5^{-2}=\frac{1}{25}$
13. Simplify $e^{\ln 14}$.
14. $y=\ln (x-2)$
15. Use $\log _{7} 8 \approx 1.069$ and $\log _{7} 5 \approx 0.827$ to evaluate $\log _{7} \frac{8}{5}$.

Expand the logarithmic expression.
16. $\log _{6} \sqrt[4]{7 x}$

Condense the logarithmic expression.
17. $\log _{7} 2+2 \log _{7} 6-\log _{7} 9$

Solve the equation.
18. $16^{x}=\left(\frac{1}{4}\right)^{x+3}$
19. $\log _{4} 2 x+\log _{4}(x-2)=2$

Write the first six terms of the sequence.
20. $a_{n}=\frac{4 n}{n+5}$

Describe the pattern, write the next term, and write a rule for the \boldsymbol{n} th term of the sequence.
21. $-15,-24,-33,-42, \ldots$

Find the sum.
22. $\sum_{i=1}^{4}-3(2)^{i-1}$
23. Write a rule for the nth term of the sequence. Then find $a_{13} \cdot-6,-4,-2,0, \ldots$

Write a rule for the \boldsymbol{n} th term of the arithmetic sequence.
24. $a_{16}=6 S, a_{19}=81$
25. Write a rule for the nth term of the sequence. Find $a_{6} .8,-32,128,-512$

Write a rule for the \boldsymbol{n} th term of the geometric sequence.
26. $a_{2}=12, a_{5}=96$

Simplify.
27. $\frac{x^{2}-13 x+40}{x^{2}-10 x+25}$
28. $\frac{7 x^{4}-9 x^{3}}{12 x^{4}}$
29. Graph $g(x)=\frac{2}{1+x}-1$. State the domain and range.

Find the product.
30. $\frac{x+9}{x^{2}+7 x-18} \cdot\left(x^{2}+5 x-14\right)$
31. $\frac{x^{5}(x+10)}{(x+5)} \cdot \frac{(x+5)(x-6)}{7 x^{6}}$

Find the quotient.
32. $\frac{-10 x}{x^{2}-11 x+28} \div \frac{90 x-10 x^{2}}{x^{2}-16 x+63}$

Find the sum or difference.
33. $\frac{x+2}{2 x+10}-\frac{-2 x+8}{x^{2}+x-20}$
34. $\frac{18}{13 x^{2}+4}+\frac{26}{13 x^{2}+4}$

Solve the equation.

35. $\frac{2}{2+x}=\frac{9}{5 x+7}$
36. $1-\frac{4}{x+9}=\frac{7}{x}$
37. Identify the period of $g(x)=\cos 5 x$. Then graph the function and describe the graph of g as a transformation of the graph of $f(x)=\cos x$.
38. In a right triangle, θ is an acute angle and $\tan \theta=\frac{5}{4}$. Evaluate $\cos \theta$ and $\sin \theta$.
39. Draw an angle that measures -280° in standard position.
40. Let $(-4,3)$ be a point on the terminal side of an angle θ in standard position. Evaluate sine, cosine and tangent of θ.
41. Convert $-\frac{7 \pi}{10}$ to degrees.
42. Solve $\triangle D E F$.

43. Find the reference angle θ^{\prime} for $\theta=329^{\circ}$.
44. Graph $g(x)=4 \sin 3 x+3$.
45. Convert 35° to radians
