Algebra 2 Semester 1 Final Exam Practice

Describe the transformation of $f(x)=x^{2}$ represented by g. Then graph
\qquad 1. Find the function : x-intercepts of 7 and -2 ; passes through $(3,-40)$
A. $y=-\frac{1}{2}(x+7)(x-2)$
B. $y=-2(x+7)(x-2)$
C. $y=\frac{1}{2}(x-7)(x+2)$
D. $y=2(x-7)(x+2)$

Write a rule for g described by the transformations of the graph of f. Then identify the vertex.
\qquad 2. $f(x)=x^{2}$; vertical shrink by a factor of $\frac{1}{3}$ and a reflection in the x-axis, followed by a translation 1 unit right.
A. $g(x)=-\frac{1}{3}(x-1)^{2} ;(1,0)$
B. $g(x)=\frac{1}{3} x^{2}-1 ;(0,-1)$
C. $g(x)=-3(x-1)^{2} ;(1,0)$
D. $g(x)=\frac{1}{3}(x-1)^{2} ;(1,0)$

Solve the equation.

3. $3(x-6)^{2}-6=1$
A. $x=6 \pm \sqrt{21}$
B. $x=6 \pm \frac{\sqrt{21}}{3}$
C. $x=-15$ and $x=27$
D. $x=-6 \pm \frac{\sqrt{21}}{3}$
4. $2 y^{2}+31 y=7 y-7 \mathrm{C}$
A. $y=7$ and $y=5$
C. noreal sohtuion
B. $y=35$
D. $y=-5$ and $\mathrm{y}=-7$
5. $19 x+32=-3 x^{2}$
A. $x=\frac{-19 \pm i \sqrt{23}}{6}$
B. $x=\frac{-19 \pm \sqrt{23}}{6}$
C. $x=\frac{19 \pm i \sqrt{23}}{6}$
D. $x=\frac{19 \pm \sqrt{23}}{6}$

Solve the system.

6. $-y=-2 x+2$
$-2 x^{2}+y=-2 x-72$
A. $(-5,-12)$
C. $(-5,-12)$ and $(7,12)$
B. $(-5,14)$ and $(7,-12)$
D. no solution

Solve the inequality. Round decimal answers to the nearest hundredth.
7. $x^{2}+13 x+36>0$
A. $4<x<$ S
B. $x<-9 \alpha x>-4$
C. $-9<x<-4$
D. $x<4$ or $x>9$

Perform the operation. Write the answer in standard form.

8. $(-5+4 i)(-8+7 i)$
A. $12+8 l$
B. $68+8 t$
C. $68-677$
D. $12-672$
9. Which statement is true about the quadratic function $y=x^{2}+9 x+10$?
A. The vertex form is $y=\left(x+\frac{9}{2}\right)^{2}-\frac{41}{4}$.
B. To complete the square, add $\frac{9}{2}$ to each side of the equation.
C. The vertex of the graph is $\left(-\frac{41}{4},-\frac{9}{2}\right)$.
D. The vertex form is $y=\left(x-\frac{9}{2}\right)^{2}+\frac{41}{4}$.
10. Find the discriminant of the quadratic equation $-8 x-18=x^{2}$ and describe the number and type of solutions of the equation.
A. 8 ; two imaginary solutions
C. -8 ; one real solution
B. -8 ; two imaginary solutions
D. 8; one real solution
11. A boy throws a ball into the air. The equation $h=-1 \epsilon^{2}+34 t+5$ models the path of the ball, where h is the height (in feet) of the ball t seconds after it is thrown. How long is the ball in the air? Round your answer to the nearest tenth of a second.
A. about 1.1 sec
C. about 2.3 sec
B. about 4.5 sec
D. about -0.1 sec

Divide using polynomial long division.

12. $\left(9 x^{4}+4 x+17\right) \div\left(x^{2}+3 x-5\right)$
A. $9 x^{2}+27 x+36+\frac{31 x+197}{x^{2}+3 x-5}$
B. $9 x^{2}-27 x+126+\frac{517 x-613}{x^{2}+3 x-5}$
C. $9 x^{2}-27 x+126+\frac{-509 x+647}{x^{2}+3 x-5}$
D. $9 x^{2}+27 x+36+\frac{-23 x-163}{x^{2}+3 x-5}$

Factor the polynomial completely.
13. $3 b^{11}-1029 b^{8}$
A. $3 b^{8}(b-7)\left(b^{2}-7 b+49\right)$
B. $3 b^{8}(b+7)\left(b^{2}-7 b+49\right)$
C. $3 b^{8}(b-7)\left(b^{2}-49\right)$
D. $3 b^{8}(b-7)\left(b^{2}+7 b+49\right)$
14. Use Pascal's Triangle to expand the binomial. $(c-3)^{5}$
A. $c^{5}-243$
B. $c^{5}+15 c^{4}+90 c^{3}+15 c^{2}+405 c+243$
C. $5 c-15$
D. $c^{5}-15 c^{4}+90 c^{3}-270 c^{2}+405 c-243$

Find the zero(s) of the function.

15. $p(x)=x^{3}+15 x^{2}+71 x+105$
A. $-7,-5$, and -3
B. $-5,3$, and 7
C. $-7,3$, and 5
D. $-3,5$, and 7

Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of $\mathbf{1}$, and the given zeros.
16. $2,4+\pi$
A. $f(x)=x^{3}-10 x^{2}+33 x+34$
B. $f(x)=x^{3}+10 x^{2}-33 x+34$
C. $f(x)=x^{3}-10 x^{2}+33 x-34$
D. $f(x)=x^{3}+33 x^{2}+10 x-34$
17. $f(x)=2 x^{2}+8$; horizontal stretch by a factor of 3 and a translation 1 unit up, followed by a reflection in the y-axis.
A. $f(x)=2\left(\frac{1}{3} x\right)^{2}+9 ;(0,9)$
B. $f(x)=2(3 x)^{2}+9 ;(0,9)$
C. $f(x)=\frac{2}{3} x^{2}+9 ;(0,9)$
D. $f(x)=6 x^{2}+9 ;(0,9)$

Graph the function.

\qquad 18. $g(x)=(x-5)^{2}(x-3)(x-1)$
A.

C.

B.

D.

