Practice C

For use with pages 279–285

Use the diagram shown and the given information to name each segment as one of the special segments of a triangle.

 $m \angle RSV = m \angle TSV, RU = UT \text{ and } \overline{SY} \cong \overline{TY}$

- 1. *RZ*
- 2. \overline{SV}
- 3. \overline{SU}
- 4. \overline{XY}

Use the figure shown and the given information.

G is the centroid of $\triangle ABC$, AD = 15, CG = 13, and $\overline{AD} \perp \overline{CB}$.

- **5.** Find the length of \overline{AG} .
- **6.** Find the length of \overline{GD} .
- **7.** Find the length of \overline{CD} .
- **8.** Find the length of \overline{GE} .
- **9.** Find the length of \overline{GB} .
- **10.** Find the perimeter of $\triangle ABC$.

Complete the following sentences with *always, sometimes,* or *never*.

- 11. The centroid of a triangle is _? the circumcenter of the triangle.
- **12.** The altitude from the vertex angle of an isosceles triangle is __? the median.
- **13.** The median to any side of an equilateral triangle is __?_ the angle bisector.
- 14. The altitudes of an acute triangle ? intersect outside the triangle.

Use the graph shown.

- **15.** Find the coordinates of D, the midpoint of \overline{AB} .
- **16.** Find the length of the median \overline{CD} .
- 17. Determine the equation \overrightarrow{CD} .
- **18.** Find the coordinates of the centroid. Label this point as G.
- **19.** Find the coordinates of E, the midpoint of \overline{CB} . Determine the equation \overrightarrow{AE} .
- **20.** Show that the quotient $\frac{AG}{AE} = \frac{2}{3}$.
- **21.** Determine the point of intersection of \overrightarrow{CD} and \overrightarrow{AE} . Is your point of intersection G?

