Practice C For use with pages 279–285 Use the diagram shown and the given information to name each segment as one of the special segments of a triangle. $m \angle RSV = m \angle TSV, RU = UT \text{ and } \overline{SY} \cong \overline{TY}$ - 1. *RZ* - 2. \overline{SV} - 3. \overline{SU} - 4. \overline{XY} ## Use the figure shown and the given information. G is the centroid of $\triangle ABC$, AD = 15, CG = 13, and $\overline{AD} \perp \overline{CB}$. - **5.** Find the length of \overline{AG} . - **6.** Find the length of \overline{GD} . - **7.** Find the length of \overline{CD} . - **8.** Find the length of \overline{GE} . - **9.** Find the length of \overline{GB} . - **10.** Find the perimeter of $\triangle ABC$. ## Complete the following sentences with *always, sometimes,* or *never*. - 11. The centroid of a triangle is _? the circumcenter of the triangle. - **12.** The altitude from the vertex angle of an isosceles triangle is __? the median. - **13.** The median to any side of an equilateral triangle is __?_ the angle bisector. - 14. The altitudes of an acute triangle ? intersect outside the triangle. ## Use the graph shown. - **15.** Find the coordinates of D, the midpoint of \overline{AB} . - **16.** Find the length of the median \overline{CD} . - 17. Determine the equation \overrightarrow{CD} . - **18.** Find the coordinates of the centroid. Label this point as G. - **19.** Find the coordinates of E, the midpoint of \overline{CB} . Determine the equation \overrightarrow{AE} . - **20.** Show that the quotient $\frac{AG}{AE} = \frac{2}{3}$. - **21.** Determine the point of intersection of \overrightarrow{CD} and \overrightarrow{AE} . Is your point of intersection G?