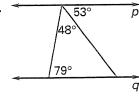
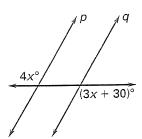
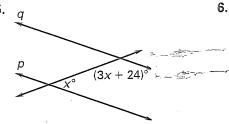

Practice B

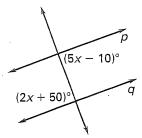

For use with pages 150-156

Is it possible to prove that lines p and q are parallel? If so, state the postulate or theorem you would use.

1.

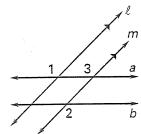






Find the value of x that makes $p \parallel q$.

4.

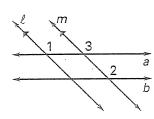


Choose the word(s) that best completes the statement.

- 7. If two lines are cut by a transversal so that alternate interior angles are (congruent, supplementary, complementary), then the lines are parallel.
- 8. If two lines are cut by a transversal so that consecutive interior angles are (congruent, supplementary, complementary), then the lines are parallel.
- 9. If the lines are cut by a transversal so that (alternate interior, alternate exterior, corresponding) angles are congruent, then the lines are parallel.
- 10. Complete the two-column proof.

Given: $\ell \parallel m, \angle 1 \cong \angle 2$

Prove: $a \parallel b$



Statements	Reasons
1. ℓ <i>m</i>	1

11. Write a two-column proof.

Given: $\ell \parallel m, \angle 1 \cong \angle 2$

Prove: $a \parallel b$

