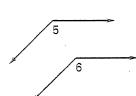
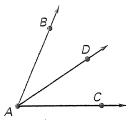
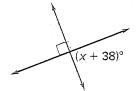
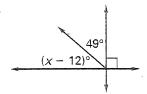

Practice B


For use with pages 136–141

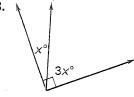

State the reason for the conclusion.

- 1. Given: $m \angle 1 = m \angle 2$ Conclusion: $\angle 1 \cong \angle 2$
- 2. Given: ∠3 and ∠4 are linear pairs. Conclusion: ∠3 and ∠4 are supplementary.
- 3. Given: $\angle 5 \cong \angle 6$ Conclusion: $\angle 6 \cong \angle 5$
- **4.** Given: X is the midpoint of \overline{MN} . Conclusion: $\overline{MX} \cong \overline{NX}$
- **5.** Given: \overrightarrow{AD} bisects $\angle BAC$. Conclusion; $\angle BAD \cong \angle DAC$

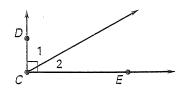




Find the value of x.


6.

7.


-8.

9. Complete the two-column proof of Theorem 3.2.

Given: $\overrightarrow{CD} \perp \overrightarrow{CE}$

Prove: $\angle 1$ and $\angle 2$ are complementary.

Statements

- 1. $\overrightarrow{CD} \perp \overrightarrow{CE}$
- **2.** $\angle DCE$ is a right \angle .
- 3. _____
- 4. $m \angle DCE = m \angle 1 + m \angle 2$
- 5. _____
- **6.** $\angle 1$ and $\angle 2$ are complementary.

- Reasons
- 1. _____
- 2. _____
- **3.** Def. of right \angle
- **5.** Substitution
- 6. _____

10. Complete the flow proof of a portion of Theorem 3.3.

Given: $\angle 1$ is a right angle. Prove: $\angle 3$ is a right angle.

3

 $\angle 1$ and $\angle 3$ are vertical $\angle s$.

∠1 is a right∠.

 $m \angle 1 = 90^{\circ}$

- - f. _____
- \rightarrow $\angle 3$ is a right \angle .
- g. _____