Practice B For use with pages 136–141 ## State the reason for the conclusion. - 1. Given: $m \angle 1 = m \angle 2$ Conclusion: $\angle 1 \cong \angle 2$ - 2. Given: ∠3 and ∠4 are linear pairs. Conclusion: ∠3 and ∠4 are supplementary. - 3. Given: $\angle 5 \cong \angle 6$ Conclusion: $\angle 6 \cong \angle 5$ - **4.** Given: X is the midpoint of \overline{MN} . Conclusion: $\overline{MX} \cong \overline{NX}$ - **5.** Given: \overrightarrow{AD} bisects $\angle BAC$. Conclusion; $\angle BAD \cong \angle DAC$ ## Find the value of x. 6. 7. -8. **9.** Complete the two-column proof of Theorem 3.2. Given: $\overrightarrow{CD} \perp \overrightarrow{CE}$ Prove: $\angle 1$ and $\angle 2$ are complementary. Statements - 1. $\overrightarrow{CD} \perp \overrightarrow{CE}$ - **2.** $\angle DCE$ is a right \angle . - 3. _____ - 4. $m \angle DCE = m \angle 1 + m \angle 2$ - 5. _____ - **6.** $\angle 1$ and $\angle 2$ are complementary. - Reasons - 1. _____ - 2. _____ - **3.** Def. of right \angle - **5.** Substitution - 6. _____ 10. Complete the flow proof of a portion of Theorem 3.3. Given: $\angle 1$ is a right angle. Prove: $\angle 3$ is a right angle. 3 $\angle 1$ and $\angle 3$ are vertical $\angle s$. ∠1 is a right∠. $m \angle 1 = 90^{\circ}$ - - f. _____ - \rightarrow $\angle 3$ is a right \angle . - g. _____