Practice B

For use with pages 109-116

Use the diagram to decide whether the statement is true or false.

1. If
$$m \angle 5 = 42^{\circ}$$
, then $m \angle 6 = 48^{\circ}$.

2. If
$$m \angle 5 = 42^{\circ}$$
, then $m \angle 7 = 42^{\circ}$.

3.
$$m \angle 5 + m \angle 7 = m \angle 6 + m \angle 8$$

4.
$$m \angle 5 + m \angle 8 = m \angle 6 + m \angle 7$$

Make a sketch of the given information. Label all angles which can be determined.

- **5.** Adjacent complementary angles where one angle measures 42°
- 7. Congruent linear pairs

- **6.** Nonadjacent supplementary angles where where one angle measures 42°
- 8. Vertical angles which measure 42°

Solve for x.

10.

11.

12. Give a reason for each step of the proof.

Given: $\angle 1$ and $\angle 2$ are complementary.

 $\angle 1 \cong \angle 3$, $\angle 2 \cong \angle 4$ Prove: $\angle 3$ and $\angle 4$ are complementary.

Statements

1. $\angle 1$ and $\angle 2$ are complementary.

2. $m \angle 1 + m \angle 2 = 90^{\circ}$

- 3. $\angle 1 \cong \angle 3$, $\angle 2 \cong \angle 4$
- **4.** $m \angle 1 = m \angle 3, m \angle 2 = m \angle 4$
- **5.** $m \angle 3 + m \angle 2 = 90^{\circ}$
- **6.** $m \angle 3 + m \angle 4 = 90^{\circ}$
- 7. $\angle 3$ and $\angle 4$ are complementary.

- Reasons
- 1. Given
- 2. <u>?</u>
- 3. Given
- 4. _ ?
- 5. <u>?</u>
- 6. _?_
- 7. _?_

13. Write a two-column proof.

Given: $\angle 2 \cong \angle 3$

Prove: $\angle 1 \cong \angle 4$

