Practice B

For use with pages 102-107

Match the statement with the Property of Congruence.

- 1. For any segment \overline{XY} , $\overline{XY} \cong \overline{XY}$
- **2.** If $\overline{JK} \cong \overline{MN}$ and $\overline{MN} \cong \overline{CD}$, then $\overline{JK} \cong \overline{CD}$.
- 3. If $\overline{BN} \cong \overline{TR}$, then $\overline{TR} \cong \overline{BN}$.

- A. Transitive Property
- B. Symmetric Property
- C. Reflexive Property

Mark the diagram with the given information.

4.
$$LM = 5$$
, $LP = 5$ $MN = 3$, $PN = 3$

5. E is the midpoint of \overline{AC} . E is the midpoint of \overline{BD} .

6. $\overline{WX} \cong \overline{YZ}$

Complete the argument, giving a reason for each step.

7. Given: HI = 8, IJ = 8, $\overline{IJ} \cong \overline{JH}$

Prove: $\overline{HI} \cong \overline{JH}$

8. Given: AL = SK

Prove: AS = LK

- **Statements** Reasons 1. HI = 8**2.** IJ = 8**2.** ? 3. HI = IJ
- 4. $\overline{HI} \cong \overline{IJ}$
- 5. $\overline{IJ} \cong \overline{JH}$
- 6. $\overline{HI} \cong \overline{JH}$

Statements	Reasons
1. AL = SK	1?_
2. LS = LS	2 . <u>?</u>
3. AL + LS = SK + LS	3 . <u>?</u>
4. AL + LS = AS	4 ?_
5. SK + LS = LK	5 . <u>?</u>
$6. \ AS = LK$	6. ?

9. Write an argument for Exercise 7 in the form of a paragraph proof.