Practice C

For use with pages 44-50

Decide if the statement is always, sometimes, or never true.

- 1. If two angles are complementary then they are adjacent.
- 2. If two angles are linear pairs then they are adjacent.
- 3. If two angles are vertical angles then they are adjacent.
- 4. If two angles are supplementary then one angle is acute and one angle is obtuse.

Use the figure at the right. Given one angle measure, find the other three.

5. If
$$m \angle 6 = 38^{\circ}$$

6. If
$$m \angle 8 = 84^{\circ}$$

7. If
$$m \angle 9 = 136^{\circ}$$

8. If
$$m \angle 7 = 27^{\circ}$$

In Exercises 9–12, assume $\angle A$ and $\angle B$ are complementary and $\angle B$ and $\angle C$ are supplementary.

9. If
$$m \angle A = 52^{\circ}$$
, then $m \angle B = \underline{?}$ and $m \angle C = \underline{?}$.

9. If
$$m \angle B = 67^\circ$$
, then $m \angle A = ?$ and $m \angle C = ?$.

11. If
$$m \angle C = 107^{\circ}$$
, then $m \angle B = ?$ and $m \angle A = ?$.

12. If
$$m \angle B = 12^{\circ}$$
, then $m \angle A = ?$ and $m \angle C = ?$.

Find the value(s) of the variable(s).

13.

16.

$$(3x + 17)^{\circ}$$

$$(2y + 9)^{\circ}$$

$$(3y - 20)$$

$$(5x - 47)^{\circ}$$

In Exercises 19 and 20, assume that $\angle A$ is supplementary to $\angle B$ and complementary to $\angle C$. Determine $m \angle A$, $m \angle B$, and $m \angle C$.

19.
$$m \angle A = (x + 10)^{\circ}, m \angle B = (12x + 1)^{\circ}, m \angle C = (5x + 2)^{\circ}$$

∠0.
$$m ∠ A = (2.5x + 17)^{\circ}$$
, $m ∠ B = (21x - 25)^{\circ}$, $m ∠ C = (8x - 11)^{\circ}$