1. Evaluate the expression without using a calculator.
(a) $8^{7 / 3}=128$
(b) $9^{5 / 2}=243$
(c) $(-27)^{-\frac{2}{3}}=\frac{1}{9}$
2. Find the real solution(s) of the equation. Round your answer to the hundredth place (when appropriate).
(a) $x=1.78$
(b) $x=3$
(c) $x=-6,-10$
3. Simplify the expression.
(a) $\left(\frac{\frac{1}{65}}{6^{5}}\right)^{3}=\frac{1}{6^{\frac{3}{5}}}$
(b) $\sqrt[4]{32} \cdot \sqrt[4]{8}=4$
(c) $\frac{1}{2-\sqrt[4]{9}}=2+\sqrt[4]{9}$
(d) $4 \sqrt[5]{8}+3 \sqrt[5]{8}=7 \sqrt[5]{8}$
(e) $2 \sqrt{48}-\sqrt{3}=7 \sqrt{3}$
(f) $\left(5^{\frac{2}{3}} \cdot 2^{\frac{3}{2}}\right)^{\frac{1}{2}}=5^{\frac{1}{3}} \cdot 2^{\frac{3}{4}}$
4. Simplify the expression. Assume all variables are positive.
(a) $\sqrt[3]{125 z^{9}}=5 z^{3}$
(b) $\frac{2^{1 / 4} z^{5 / 4}}{6 z}=\frac{(2 z)^{1 / 4}}{6}$
(c) $\sqrt{10 z^{5}}-z^{2} \sqrt{40 z}=-z^{2} \sqrt{10 z}$
5. Describe the transformation of f represented by g. Then graph each function.
(a) $f(x)=\sqrt{x}, g(x)=-2 \sqrt{x}: \mathrm{G}$ is a reflection in the x -axis and a vertical stretch by a factor of 2 .
(b) $f(x)=\sqrt{x}, g(x)=\sqrt{-x}-6$: G is a reflection in the y -axis and a vertical shift 6 units down.
6. Let the graph of g be a reflection in the y-axis, followed by a translation 7 units to the right of the graph of $f(x)=\sqrt{x}$. Write a rule for $g . \quad g(x)=\sqrt{-x+7}$
7. Solve the equation. Check your solution.
(a) $x=62$
(b) $x=10,2$
(c) $x=36$
8. Solve the inequality.
(a) $x>9$
(b) $8 \leq x<152$
(c) $x \geq 30$
9. Find the inverse of the function and label it $g(x)$. Then graph the function and its inverse.
(a) $g(x)=-2 x+20$
(b) $g(x)=\sqrt{x-8}$
(c) $g(x)=\sqrt[3]{-x-9}$
