\qquad

1. Evaluate the expression without using a calculator.
(a) $8^{7 / 3}$
(b) $9^{5 / 2}$
(c) $(-27)^{-2 / 3}$
2. Find the real solution(s) of the equation. Round your answer to the hundredth place (when appropriate).
(a) $x^{5}+17=35$
(b) $7 x^{3}=189$
(c) $(x+8)^{4}=16$
3. Simplify the expression.
(a) $\left(\frac{6^{1 / 5}}{6^{2 / 5}}\right)^{3}$
(b) $\sqrt[4]{32} \cdot \sqrt[4]{8}$
(c) $\frac{1}{2-\sqrt[4]{9}}$
(d) $4 \sqrt[5]{8}+3 \sqrt[5]{8}$
(e) $2 \sqrt{48}-\sqrt{3}$
(f) $\left(5^{2 / 3} \cdot 2^{3 / 2}\right)^{1 / 2}$
4. Simplify the expression. Assume all variables are positive.
(a) $\sqrt[3]{125 z^{9}}$
(b) $\frac{2^{1 / 4} z^{5 / 4}}{6 z}$
(c) $\sqrt{10 z^{5}}-z^{2} \sqrt{40 z}$
5. Describe the transformation of f represented by g. Then graph each function.
(a) $f(x)=\sqrt{x}, g(x)=-2 \sqrt{x}$
(b) $f(x)=\sqrt{x}, g(x)=\sqrt{-x}-6$
6. Let the graph of g be a reflection in the y-axis, followed by a translation 7 units to the right of the graph of $f(x)=\sqrt{x}$. Write a rule for g.
7. Solve the equation. Check your solution.
(a) $4 \sqrt[3]{2 x+1}=20$
(b) $\sqrt{4 x-4}=\sqrt{5 x-1}-1$
(c) $(6 x)^{2 / 3}=36$
8. Solve the inequality.
(a) $5 \sqrt{x}+2>17$
(b) $2 \sqrt{x-8}<24$
(c) $7 \sqrt[3]{x-3} \geq 21$
9. Find the inverse of the function and label it $g(x)$. Then graph the function and its inverse.
(a) $f(x)=-\frac{1}{2} x+10$
(b) $f(x)=x^{2}+8, x \geq 0$
(c) $f(x)=-x^{3}-9$
