Chapter 6 Exponential and Logarithmic Functions

6.1: Exponential Growth & Decay Functions (pg. 296 – 299)

exponential function has the form $y = ab^x$

Parent Function for Exponential Growth Functions

The function $f(x) = b^x$, where b > 1, is the parent function for the family of exponential growth functions with base b. The graph shows the general shape of an exponential growth function.

The domain of $f(x) = b^x$ is all real numbers. The range is y > 0.

Parent Function for Exponential Decay Functions

The function $f(x) = b^x$, where 0 < b < 1, is the parent function for the family of exponential decay functions with base b. The graph shows the general shape of an exponential decay function.

The domain of $f(x) = b^x$ is all real numbers. The range is y > 0.

CONCEPT 1: GRAPHING EXPONENTIAL GROWTH & DECAY FUNCTIONS

1. Tell whether each function represents exponential growth (b > 1) or decay (0 < b < 1). Then graph the function.

a) $y = (2)^x$ GROWTH

b) $y = \left(\frac{1}{2}\right)^x$	ELAY
-------------------------------------	------

X	-2	-1	0	1	2	X	-2	-1	0	1	2
0	74	1/2	wit wi	2	4	8	4	2	1	1/2	1/4

2. Tell whether each function represents exponential growth (b > 1) or decay (0 < b < 1). Then graph the function.

a)
$$y = (1.5)^x$$

Kb GROWTH

X	-2	-1	0	1	2	X	-2	-1	0	1	2
Y	0.4	0.6		1.5	2.25	3	9	3	1	1/3	1/9
			W A				A program with	5 TA			

Some real-life quantities increase or decrease by a fixed percent each year (or some other time period). The amount y of such a quantity after t years can be modeled by one of these equations.

Exponential Growth Model

Exponential Decay Model

$$y=a(1+r)^t$$

$$y=a(1-r)^t$$

Note that a is the initial amount and r is the percent increase or decrease written as a decimal. The quantity 1 + r is the growth factor, and 1 - r is the decay factor.

CONCEPT 2: SOLVING A REAL-LIFE PROBLEM

- 3. The value of a car y (in thousands of dollars) can be approximated by the model $y = 25(0.85)^t$, where t is the number of years since the car was new.
- a) Tell whether the model represents exponential growth or exponential decay.

h= 0.45

04 0.85 41

b) Identify the annual percent increase or decrease in the value of the car.

4. The value of a car y (in thousands of dollars) can be approximated by the model $y = 31(0.92)^t$, where t is the number of years since the car was new.

a) Tell whether the model represents exponential growth or exponential decay.

P-1)67

0< 0.92 < 1 DECAY

b) Identify the annual percent increase or decrease in the value of the car.

r= 0.08, = 8% DECREASE

bal; Genth

- 5- 0.92-1

80.0 =7

CONCEPT 3: WRITING AN EXPONENTIAL MODEL

- 5. In 2000, the world population was about 6.09 billion. During the next 13 years, the world population increase by about 1.18% each year.
- a) Write an exponential growth model giving the population y (in billions) t years after 2000.

b) Estimate the world population in 2005.

b) Estimate the world population in 2005.
a)
$$y = \alpha(1+r)^{\frac{1}{2}} = y = 6.09(1+0.0118)^{\frac{1}{2}} = y = 6.09(1.0118)^{\frac{1}{2}}$$

七》2005》七5

CONCEPT 4: REWRITING AN EXPONENTIAL FUNCTION

6. The amount y (in grams) of the radioactive isotope chromium-51 remaining after t days is $y = a(0.5)^{\frac{1}{28}}$, where a is the initial amount (in grams). What percent of the chromium-51

decays each day?

7. The amount y (in grams) of the radioactive isotope barium-140 remaining after t days is $y = a(0.5)^{\frac{1}{13}}$, where a is the initial amount (in grams). What percent of the barium-140 decays

Compound Interest

Consider an initial principal P deposited in an account that pays interest at an annual rate r (expressed as a decimal), compounded n times per year. The amount A in the account after t years is given by

$$A = P\left(1 + \frac{r}{n}\right)^{n}.$$

CONCEPT 5: FINDING THE BALANCE IN AN ACCOUNT

8. You deposit \$9000 in an account that pays 1.46% annual interest. Find the balance after 3 years when the interest is compounded quarterly.

9. You deposit \$8600 in an account that pays 1.32% annual interest. years when the interest is compounded quarterly.

6.2: The Natural Base e (pg. 304 – 306)

The Natural Base e

The natural base e is irrational. It is defined as follows:

As x approaches $+\infty$, $\left(1+\frac{1}{x}\right)^x$ approaches $e\approx 2.71828182846$.

CONCEPT 1: SIMPLIFYING NATURAL BASE EXPRESSIONS

1. Simplifying each expression.

a)
$$e^3 \cdot e^6$$

b)
$$\frac{16e^5}{4e^4}$$

c)
$$(3e^{-4x})^2$$

2. Simplifying each expression.

a)
$$e^2 \cdot e^9$$

b)
$$\frac{25e^{13}}{5e^{12}}$$

c)
$$(2e^{-3x})^5$$

Natural Base Functions

A function of the form $y = ae^{rx}$ is called a natural base exponential function.

- When a > 0 and r > 0, the function is an exponential growth function.
- When a > 0 and r < 0, the function is an exponential decay function.

The graphs of the basic functions $y = e^x$ and $y = e^{-x}$ are shown.

CONCEPT 2: GRAPHING NATURAL BASE FUNCTIONS

3. Tell whether each function represents exponential growth or exponential decay. Then graph the function.

a)
$$y = 3e^x$$

b)
$$f(x) = e^{-0.5x}$$

a= 3

T=1 GROWTH

a = 1

=-0.5

DECAY

X	-2	-1	0	304 137	2	X	-4	-2	0	2	4
5	.4	1.1	3	8.2	22.2	3	7.4	2.7	1	.4	1.

4. Tell whether each function represents exponential growth or exponential decay. Then graph the function.

$$a) f(x) = 2.5e^x$$

b)
$$y = e^{-0.2x}$$

a=2.5

GROWTH

0 - 1

= -0.2

DECAY

X	-2	-1	O	1	2
3	.33	.92	2.5	6.3	18.5

Continuously Compounded Interest

When interest is compounded *continuously*, the amount A in an account after t years is given by the formula

 $A = Pe^{r}$

where P is the principal and r is the annual interest rate expressed as a decimal.

CONCEPT 3: MODELING WITH MATHEMATICS

5. You and your friend each have accounts that earn annual interest compounded continuously. The balance A (in dollars) of your account after t years can be modeled by $A = 4500e^{0.04t}$. The graph shows the balance of your friend's account over time. Which account has a greater principal? Which has a greater balance after 10 years?

A= 4500e 0.04 = 4500e 2 \$6713?

6. You deposit \$4250 in an account that earns 5% annual interest compounded continuously. Compare the balance after 10 years with the account in Example \$6.

 $0.3 \text{ H}^{3} = 0.0 \text{ A}^{3} = 0.0 \text{ A}^{3$

6.3 Logarithms & Logarithmic Functions (pg. 310 - 313)

Definition of Logarithm with Base b

Let b and y be positive real numbers with $b \neq 1$. The logarithm of y with base b is denoted by log, y and is defined as

$$\log_b y = x$$

if and only if

$$b^x = y.$$

The expression $\log_b y$ is read as "log base b of y."

CONCEPT 1: REWRITING LOGARITHMIC FUNCTIONS

1. Rewrite each equation in exponential form.

a)
$$\log_2 16 = 4$$

b)
$$\log_4 1 = 0$$

c)
$$\log_{12} 12 = 1$$

$$d) \log_{\underline{1}} 4 = -1$$

Logarithmic Form

Exponential Form

2. Rewrite each equation in logarithmic form.

a)
$$5^2 = 25$$

a)
$$5^2 = 25$$
 b) $10^{-1} = 0.1$

c)
$$8^{\frac{2}{3}} = 4$$

d)
$$6^{-3} = \frac{1}{216}$$

Exponential Form

Logarithmic Form

HINT: To help you find the value of log(b)y, ask which power of b gives you y 3. Evaluate each logarithm.

b)
$$\log_5 0.2$$

a) logy 64 -> 4=64 > 43=64

10936=12

d)
$$\log_{36} 6 \Rightarrow 36^{?} = 6 = 36^{1/2} = 6$$

8

$$6.1 - 6.7$$

* NO BYCE GENERO

CONCEPT 4: EVALUATING COMMON & NATURAL LOGARITHMS

4. Evaluate (a) log 8 and (b) ln 0.3 using a calculator. Round your answer to the third decimal place.

a) log 8 => log 108 => 0.903 b) In 0.3 = -1.204

Using Inverse Properties

By the definition of a logarithm, it follows that the logarithmic function $g(x) = \log_b x$ is the inverse of the exponential function $f(x) = b^x$. This means that

$$g(f(x)) = \log_b b^x = x$$
 and $f(g(x)) = b^{\log_b x} = x$.

In other words, exponential functions and logarithmic functions "undo" each other.

CONCEPT 5: USING INVERSE PROPERTIES

5. Simplify (a) $10^{\log 4}$ and (b) $\log_5 25^x$

b) logg(52)x = 2x

6. Simplify (a) $10^{\log 7}$ and (b) $\log_3 27^x$

b) log3 (33) x = 3x

CONCEPT 6: FINDING INVERSE FUNCTIONS

* THE INERSE E

7. Find the inverse of each function

$$a) f(x) = 6^x$$

b)
$$y = \ln(x+3)$$

$$e^{x} = y + 3$$
 $e^{x} = y + 3$

8. Find the inverse of the function.

$$a) f(x) = 11^x$$

$$b) y = \ln(x+6)$$

BRIGHT HOR LIAN SH

breaking 9

Parent Graphs for Logarithmic Functions

The graph of $f(x) = \log_b x$ is shown below for b > 1 and for 0 < b < 1. Because $f(x) = \log_b x$ and $g(x) = b^x$ are inverse functions, the graph of $f(x) = \log_b x$ is the reflection of the graph of $g(x) = b^x$ in the line y = x.

Graph of $f(x) = \log_b x$ for b > 1 Graph of $f(x) = \log_b x$ for 0 < b < 1

Note that the y-axis is a vertical asymptote of the graph of $f(x) = \log_b x$. The domain of $f(x) = \log_b x$ is x > 0, and the range is all real numbers.

CONCEPT 7: GRAPHING A LOGARITHMIC FUNCTION

9. a) Graph $f(x) = \log_3 x$

9(x) = 3X

b) Graph $y = \log_7 x$

		-	1 8 8	- V-
-2	-1	0		2
1/9	1/3	- 1	3	9

87	X	-2	-1	1000	2/160	2
401	3	1/49	דע	1	٦	49

	3.			
1/9	1/3	- 1	3	9
-2	-1	0	1	2

X	1/49	77		7	49
5	-2	-1	0	1	2

f(x) = 109 = X

ASYMPTOTE: X=0 (y-axxs)

DOMAIN: X>0

RANGE: R (ALL REAL NUMBERS)

A: X=0

10