\qquad
Name \qquad Date \qquad
\qquad

1. In a right triangle, θ is an acute angle and $\cos \theta=\frac{6}{11}$. Evaluate $\sin \theta$ and $\tan \theta$.
2. The shadow of a tree measures 25 feet from its base. The angle of elevation to the sun is 31°. How tall is the tree? Draw and label a right triangle to represent the problem. Round your answer to the nearest foot.
\#3-4: Draw the following angles in standard position.
3. 462°
4. -311°
5. Find one positive angle and one negative angle that are coterminal with 382°.
\#6-9: Convert the degree measure to radians or the radian measure to degrees.
6. 30°
7. -225°
8. $-\frac{3 \pi}{4}$
9. $\frac{5 \pi}{3}$
\#10-13: Find the reference angle θ^{\prime} for the given angles.
10. 92°
11. -307°
12. 215°
13. $\frac{11 \pi}{6}$
\#14-15: Given a point on the terminal side of angle θ in standard position, find $\sin \theta, \cos \theta$ and $\tan \theta$.
14. $(24,-7)$
15. $(-2,9)$
```
\operatorname{sin}0=
```

\qquad

```
\operatorname{cos}0=
tan}0
```

\qquad
$\sin \theta=$ \qquad
$\cos \theta=$ \qquad
$\tan \theta=$ \qquad
\#16-19: Evaluate the function without using a calculator. Write your answer as an exact value.
16. $\sin 330^{\circ}$
17. $\cos \left(-405^{\circ}\right)$
18. $\sin \frac{13 \pi}{6}$
19. $\tan \frac{11 \pi}{3}$
\#20-21: Identify the amplitude, period and any shifts of each function. Then graph the function.
20. $y=\cos (x+\pi)+2$

Amplitude: \qquad
Period: \qquad
Phase shift: \qquad
Vertical shift: \qquad

21. $f(x)=-3 \sin 2\left(x-\frac{\pi}{2}\right)$

Amplitude: \qquad
Period: \qquad
Phase shift: \qquad
Vertical shift: \qquad

\#22-23: Write a function for each sinusoid.
22.

23.

24. You put a reflector on a spoke of your bicycle wheel. The highest point of the reflector is 25 inches above the ground, and the lowest point is 2 inches above the ground. The reflector makes one revolution per second. Write a model for the height h (in inches) of the reflector as a function of time t (in seconds) given that the reflector is at its lowest point when $t=0$.
\#25-26: Use the Pythagorean Identity and Tangent Identity to find the other two trig values.
25. $\cos \theta=\frac{12}{13}, \frac{3 \pi}{2}<\theta<2 \pi$
26. $\tan \theta=\frac{3}{4}, \quad 0<\theta<\frac{\pi}{2}$

