| Alge | bra 2 C                                   | hapter 9 Review Worksheet                                                      | Assignment # |
|------|-------------------------------------------|--------------------------------------------------------------------------------|--------------|
| Nam  | e                                         | Date                                                                           | Period       |
| 1.   | In a right triangle, $\theta$ is an acute | angle and $\cos\theta = \frac{6}{11}$ . Evaluate $\sin\theta$ and $\tan\theta$ |              |

- 2. The shadow of a tree measures 25 feet from its base. The angle of elevation to the sun is 31°. How tall is the tree? Draw and label a right triangle to represent the problem. Round your answer to the nearest foot.
- **#3-4:** Draw the following angles in standard position.
- 3. 462° 4. –311°
- 5. Find one positive angle and one negative angle that are coterminal with 382°.
- **#6-9:** Convert the degree measure to radians or the radian measure to degrees.
- 6.  $30^{\circ}$  7.  $-225^{\circ}$  8.  $-\frac{3\pi}{4}$  9.  $\frac{5\pi}{3}$

**#10-13:** Find the reference angle  $\theta$ ' for the given angles.

10. 92° 11. -307° 12. 215° 13.  $\frac{11\pi}{6}$ 

**#14-15:** Given a point on the terminal side of angle  $\theta$  in standard position, find sin $\theta$ , cos $\theta$  and tan $\theta$ .

14. (24, -7) 15. (-2, 9)

| sinθ = | sinθ = |
|--------|--------|
| cosθ = | cosθ = |
| tanθ = | tanθ = |

#16-19: Evaluate the function without using a calculator. Write your answer as an exact value.

16.  $\sin 330^{\circ}$  17.  $\cos (-405^{\circ})$  18.  $\sin \frac{13\pi}{6}$  19.  $\tan \frac{11\pi}{3}$ 

## #20-21: Identify the amplitude, period and any shifts of each function. Then graph the function.



#22-23: Write a function for each sinusoid.



24. You put a reflector on a spoke of your bicycle wheel. The highest point of the reflector is 25 inches above the ground, and the lowest point is 2 inches above the ground. The reflector makes one revolution per second. Write a model for the height h (in inches) of the reflector as a function of time t (in seconds) given that the reflector is at its lowest point when t = 0.

**#25-26:** Use the Pythagorean Identity and Tangent Identity to find the other two trig values.

25. 
$$\cos\theta = \frac{12}{13}, \quad \frac{3\pi}{2} < \theta < 2\pi$$
 26.  $\tan\theta = \frac{3}{4}, \quad 0 < \theta < \frac{\pi}{2}$