Ch. 6 Review - Part 1 (Sections 6.1-6.4)

6.1 Exponential Growth and Decay Functions (pp. 295-302)

Tell whether the function represents exponential growth or exponential decay. Identify the percent increase or decrease. Then graph the function.

Include a minimum of three points and any asymptote.

1. $f(x)=\left(\frac{1}{2}\right)^{x}$
2. $y=5^{x}$
3. $f(x)=(0.2)^{x}$

4. You deposit $\$ 1500$ in an account that pays 7% annual interest. Find the balance after 2 years when the interest is compounded daily.

6.2 The Natural Base e (pp. 303-308)

Simplify the expression.
5. $e^{4} \cdot e^{11}$
6. $\frac{20 e^{3}}{10 e^{6}}$
7. $\left(-3 e^{-5 x}\right)^{2}$

Tell whether the function represents exponential growth or exponential decay. Then match the function with the correct graph.
8. $f(x)=\frac{1}{3} e^{x}$
9. $y=6 e^{-x}$
10. $y=3 e^{-0.75 x}$
A.

B.

C.

6.3 Logarithms and Logarithmic Functions (pp. 309-316)

Evaluate the logarithm.

11. $\log _{2} 8$
12. $\log _{6} \frac{1}{36}$
13. $\log _{5} 1$

Find the inverse of the function.
14. $f(x)=8^{x}$
15. $y=\ln (x-4)$
16. $y=\log (x+9)$
17. Graph $y=\log _{1 / 5} x$.

Include a minimum of three points and any asymptote.

6.4 Transformations of Exponential and Logarithmic Functions (pp. 317-324)

\#18-19: Describe the transformation of f represented by g. Then graph both functions.
18. $f(x)=3^{x}, g(x)=3^{x-2}-5$
19. $f(x)=\log _{4} x, g(x)=-2 \log _{4} x$

\#20-21: Write a rule for g.
20. Let the graph of g be a vertical stretch by a factor of 3 , followed by a translation 6 units left and 3 units up of the graph of $f(x)=e^{x}$.
21. Let the graph of g be a translation 2 units down, followed by a reflection in the y-axis of the graph of $f(x)=\log x$.

