Study Guide and Intervention

Base e and Natural Logarithms

Base e and Natural Logarithms The irrational number $e \approx 2.71828...$ often occurs as the base for exponential and logarithmic functions that describe real-world phenomena.

Natural Base *e* As *n* increases,
$$\left(1 + \frac{1}{n}\right)^n$$
 approaches $e \approx 2.71828...$ In $x = \log_e x$

The functions $y = e^x$ and $y = \ln x$ are inverse functions.

Inverse Property of Base e and Natural Logarithms $e^{\ln x} = x$ In $e^x = x$

Natural base expressions can be evaluated using the e^x and ln keys on your calculator.

Example 1

Evaluate ln 1685.

Use a calculator. $\ln 1685 \approx 7.4295$

Write a logarithmic equation equivalent to $e^{2x} = 7$.

$$e^{2x} = 7 \to \log_e 7 = 2x \text{ or } 2x = \ln 7$$

Example 3 Evaluate $\ln e^{18}$.

Use the Inverse Property of Base e and Natural Logarithms. $\ln e^{18} = 18$

Exercises

Use a calculator to evaluate each expression to four decimal places.

Write an equivalent exponential or logarithmic equation.

9.
$$e^{15} = x$$

10.
$$e^{3x} = 45$$

11.
$$\ln 20 = x$$

12.
$$\ln x = 8$$

13.
$$e^{-5x} = 0.2$$

14.
$$\ln (4x) = 9.6$$

15.
$$e^{8.2} = 10x$$

16.
$$\ln 0.0002 = x$$

Evaluate each expression.

17.
$$\ln e^3$$

18.
$$e^{\ln 42}$$

19.
$$e^{\ln 0.5}$$

20.
$$\ln e^{16.2}$$