Study Guide and Intervention

Common Logarithms

Common Logarithms Base 10 logarithms are called common logarithms. The expression $\log_{10} x$ is usually written without the subscript as $\log x$. Use the \log key on your calculator to evaluate common logarithms.

The relation between exponents and logarithms gives the following identity.

Inverse Property of Logarithms and Exponents

$$10^{\log x} = x$$

Example 1 Evaluate log 50 to four decimal places.

Use the LOG key on your calculator. To four decimal places, $\log 50 = 1.6990$.

Example 2 Solve $3^{2x+1} = 12$.

$$3^{2x+1}=12$$

Original equation

$$\log 3^{2x+1} = \log 12$$

Property of Equality for Logarithms

$$(2x + 1) \log 3 = \log 12$$

Power Property of Logarithms

$$2x + 1 = \frac{\log 12}{\log 3}$$

Divide each side by log 3.

$$2x = \frac{\log 12}{\log 3} - 1$$

Subtract 1 from each side.

$$x=rac{1}{2}\Big(rac{\log 12}{\log 3}-1\Big)$$
 Multiply each side by $rac{1}{2}$.

$$x \approx 0.6309$$

Exercises

Use a calculator to evaluate each expression to four decimal places.

Solve each equation or inequality. Round to four decimal places.

7.
$$4^{3x} = 12$$

8.
$$6^{x+2} = 18$$

9.
$$5^{4x-2} = 120$$

10.
$$7^{3x-1} \ge 21$$

11.
$$2.4^{x+4} = 30$$

12.
$$6.5^{2x} \ge 200$$

13.
$$3.6^{4x-1} = 85.4$$

14.
$$2^{x+5} = 3^{x-2}$$

15.
$$9^{3x} = 4^{5x+2}$$

16.
$$6^{x-5} = 2^{7x+3}$$