Study Guide and Intervention (continued)

Logarithms and Logarithmic Functions

Solve Logarithmic Equations and Inequalities

Logarithmic to Exponential Inequality	If $b > 1$, $x > 0$, and $\log_b x > y$, then $x > b^y$. If $b > 1$, $x > 0$, and $\log_b x < y$, then $0 < x < b^y$.
Property of Equality for Logarithmic Functions	If b is a positive number other than 1, then $\log_b x = \log_b y$ if and only if $x = y$.
Property of Inequality for Logarithmic Functions	If $b > 1$, then $\log_b x > \log_b y$ if and only if $x > y$, and $\log_b x < \log_b y$ if and only if $x < y$.

Example 1

Solve $\log_2 2x = 3$.

 $\log_2 2x = 3$ Original equation

> $2x = 2^3$ Definition of logarithm

2x = 8Simplify.

x = 4Simplify.

The solution is x = 4.

Example 2 Solve $\log_5 (4x - 3) < 3$.

 $\log_5\left(4x-3\right)<3$

Original equation

 $0 < 4x - 3 < 5^3$

Logarithmic to exponential inequality Addition Property of Inequalities

$$3 < 4x < 125 + 3$$

 $\frac{3}{4} < x < 32$

The solution set is $\left\{x \middle| \frac{3}{4} < x < 32\right\}$.

Exercises

Solve each equation or inequality.

$$1.\log_2 32 = 3x$$

$$3. \log_{2x} 16 = -2$$

$$5. \log_4 (5x + 1) = 2$$

7.
$$\log_4 (3x - 1) = \log_4 (2x + 3)$$

9.
$$\log_{x+4} 27 = 3$$

Sopyright @ Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.

11.
$$\log_x 1000 = 3$$

13.
$$\log_2 2x > 2$$

15.
$$\log_2 (3x + 1) < 4$$

17.
$$\log_3(x+3) < 3$$

$$2. \log_3 2c = -2$$

4.
$$\log_{25}\left(\frac{x}{2}\right) = \frac{1}{2}$$

6.
$$\log_8(x-5) = \frac{2}{3}$$

8.
$$\log_2(x^2 - 6) = \log_2(2x + 2)$$

10.
$$\log_2(x+3) = 4$$

12.
$$\log_8(4x+4)=2$$

14.
$$\log_5 x > 2$$

16.
$$\log_4{(2x)} > -\frac{1}{2}$$

18.
$$\log_{27} 6x > \frac{2}{3}$$