Study Guide and Intervention

Logarithms and Logarithmic Functions

Logarithmic Functions and Expressions

Definition of Logarithm
with Base b

Let b and x be positive numbers, $b \neq 1$. The logarithm of x with base b is denoted $\log_b x$ and is defined as the exponent y that makes the equation $b^y = x$ true.

The inverse of the exponential function $y = b^x$ is the **logarithmic function** $x = b^y$. This function is usually written as $y = \log_b x$.

Properties of	
Logarithmic Function	15

- 1. The function is continuous and one-to-one.
- 2. The domain is the set of all positive real numbers.
- 3. The y-axis is an asymptote of the graph.
- 4. The range is the set of all real numbers.
- 5. The graph contains the point (1, 0).

Write an exponential equation equivalent to $\log_3 243 = 5$.

$$3^5 = 243$$

Example 2 Write a logarithmic equation equivalent to $6^{-3} = \frac{1}{216}$.

$$\log_6 \frac{1}{216} = -3$$

Example 3 Evaluate $\log_8 16$.

$$8^{\frac{4}{3}} = 16$$
, so $\log_8 16 = \frac{4}{3}$.

Exercises

Write each equation in logarithmic form.

$$1.2^7 = 128$$

2.
$$3^{-4} = \frac{1}{81}$$

$$3.\left(\frac{1}{7}\right)^3 = \frac{1}{343}$$

Write each equation in exponential form.

4.
$$\log_{15} 225 = 2$$

$$5. \log_3 \frac{1}{27} = -3$$

6.
$$\log_4 32 = \frac{5}{2}$$

Evaluate each expression.

7.
$$\log_4 64$$

$$\mathbf{8.}\,\log_2 64$$

10.
$$\log_5 625$$

11.
$$\log_{27} 81$$

12.
$$\log_{25} 5$$

13.
$$\log_2 \frac{1}{128}$$

14.
$$\log_{10} 0.00001$$

15.
$$\log_4 \frac{1}{32}$$