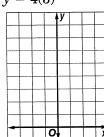
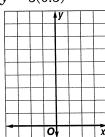

9-1

Practice


Exponential Functions

Sketch the graph of each function. Then state the function's domain and range.


1.
$$y = 1.5(2)^x$$

2.
$$y = 4(3)^x$$

3.
$$y = 3(0.5)^x$$

4.
$$y = 5(0.6)^x$$

5.
$$y = 0.1(2)^x$$

6.
$$y = 5 \cdot 4^{-x}$$

Write an exponential function whose graph passes through the given points.

7.
$$(0, 1)$$
 and $(-1, 4)$

9.
$$(0, -3)$$
 and $(1, -1.5)$

11.
$$(0, -0.4)$$
 and $(2, -10)$

12.
$$(0, \pi)$$
 and $(3, 8\pi)$

Simplify each expression.

13.
$$(2^{\sqrt{2}})^{\sqrt{8}}$$

14.
$$(n^{\sqrt{3}})^{\sqrt{75}}$$

15.
$$y^{\sqrt{6}} \cdot y^{5\sqrt{6}}$$

16.
$$13^{\sqrt{6}} \cdot 13^{\sqrt{24}}$$

17.
$$n^3 \div n^{\pi}$$

18.
$$125^{\sqrt{11}} \div 5^{\sqrt{11}}$$

Solve each equation or inequality. Check your solution.

19.
$$3^{3x-5} > 81$$

20.
$$7^{6x} = 7^{2x-20}$$

21.
$$3^{6n-5} < 9^{4n-3}$$

22.
$$9^{2x-1} = 27^{x+4}$$

23.
$$2^{3n-1} \ge \left(\frac{1}{8}\right)^n$$

24.
$$16^{4n-1} = 128^{2n+1}$$

BIOLOGY For Exercises 25 and 26, use the following information.

The initial number of bacteria in a culture is 12,000. The number after 3 days is 96,000.

25. Write an exponential function to model the population y of bacteria after x days.

26. How many bacteria are there after 6 days?

27. EDUCATION A college with a graduating class of 4000 students in the year 2005 predicts that it will have a graduating class of 4862 in 4 years. Write an exponential function to model the number of students y in the graduating class t years after 2005.