6.2 Practice A

In Exercises 1 and 2, rewrite the expression in rational exponent form.

1.
$$\sqrt{7}$$
 2. $\sqrt[4]{13}$

In Exercises 3 and 4, rewrite the expression in radical form.

3.
$$14^{1/4}$$
 4. $117^{1/6}$

In Exercises 5 and 6, find the indicated real *n*th root(s) of *a*.

5. n = 3, a = 27 **6.** n = 4, a = 16

In Exercises 7 and 8, find the dimensions of the cube. Check your answer.

In Exercises 9–11, evaluate the expression.

S

9.
$$\sqrt[3]{-125}$$
 10. $\sqrt[4]{81}$ **11.** $\sqrt[4]{-625}$

In Exercises 12 and 13, rewrite the expression in rational exponent form.

12.
$$(\sqrt[4]{14})^3$$
 13. $(\sqrt[3]{-40})^5$

In Exercises 14 and 15, rewrite the expression in radical form.

14. $10^{3/5}$ **15.** $(-3)^{6/5}$

In Exercises 16–18, evaluate the expression.

16.
$$81^{3/4}$$
 17. $25^{3/2}$ **18.** $(-27)^{2/3}$

19. The area of a square patio is 49^3 square inches. Find the length of one side of the patio.

Date

Practice B 6.2

In Exercises 1 and 2, find the indicated nth root(s) of a.

1.
$$n = 6, a = 64$$
 2. $n = 5, a = 243$

In Exercises 3 and 4, find the dimensions of the cube. Check your answer.

3. Volume = 729 cm^3 **4.** Volume = 1000 yd^3

In Exercises 5–7, evaluate the expression.

7. $(-625)^{1/4}$ **5.** $-\sqrt[3]{-512}$ 6. $729^{1/6}$

In Exercises 8 and 9, rewrite the expression in rational exponent form.

8. $(\sqrt[5]{-53})^4$ **9.** $(\sqrt[4]{110})^7$

In Exercises 10 and 11, rewrite the expression in radical form.

10. $(-34)^{4/9}$ **11.** 41^{7/4}

In Exercises 12–17, evaluate the expression.

- **12.** $(-128)^{3/7}$ **13.** $(-25)^{5/2}$ **14.** 1000^{4/3} **16.** (343)^{-1/3} **15.** $\left(\frac{1}{125}\right)^{2/3}$ **17.** $\left(\frac{1}{64}\right)^{3/2}$
- **18.** The radius of a sphere is given by the equation $r = \left(\frac{3V}{4\pi}\right)^{1/3}$, where V is the

volume of the sphere. Find the radius, to the nearest centimeter, of a sphere that has a volume of 268 cubic centimeters. Use 3.14 for π .

19. Use the formula $r = \left(\frac{F}{P}\right)^{1/n} - 1$ to find the annual inflation rate to the nearest tenth of a percent. A rare coin increases in value from \$0.25 to \$1.50 over a period of 30 years.

