\qquad

6.2 Practice A

In Exercises 1 and 2, rewrite the expression in rational exponent form.

1. $\sqrt{7}$
2. $\sqrt[4]{13}$

In Exercises 3 and 4, rewrite the expression in radical form.
3. $14^{1 / 4}$
4. $117^{1 / 6}$

In Exercises 5 and 6, find the indicated real nth root(s) of a.
5. $n=3, a=27$
6. $n=4, a=16$

In Exercises 7 and 8, find the dimensions of the cube. Check your answer.
7. Volume $=125 \mathrm{ft}^{3}$
8. Volume $=343 \mathrm{~m}^{3}$

In Exercises 9-11, evaluate the expression.
9. $\sqrt[3]{-125}$
10. $\sqrt[4]{81}$
11. $\sqrt[4]{-625}$

In Exercises 12 and 13, rewrite the expression in rational exponent form.
12. $(\sqrt[4]{14})^{3}$
13. $(\sqrt[3]{-40})^{5}$

In Exercises 14 and 15, rewrite the expression in radical form.
14. $10^{3 / 5}$
15. $(-3)^{6 / 5}$

In Exercises 16-18, evaluate the expression.
16. $81^{3 / 4}$
17. $25^{3 / 2}$
18. $(-27)^{2 / 3}$
19. The area of a square patio is 49^{3} square inches. Find the length of one side of the patio.
\qquad
\qquad

6.2 Practice B

In Exercises 1 and 2, find the indicated $\boldsymbol{n t h} \operatorname{root}(\mathrm{s})$ of \boldsymbol{a}.

1. $n=6, a=64$
2. $n=5, a=243$

In Exercises 3 and 4, find the dimensions of the cube. Check your answer.
3. Volume $=729 \mathrm{~cm}^{3}$

4. Volume $=1000 \mathrm{yd}^{3}$

In Exercises 5-7, evaluate the expression.
5. $-\sqrt[3]{-512}$
6. $729^{1 / 6}$
7. $(-625)^{1 / 4}$

In Exercises 8 and 9, rewrite the expression in rational exponent form.
8. $(\sqrt[5]{-53})^{4}$
9. $(\sqrt[4]{110})^{7}$

In Exercises 10 and 11, rewrite the expression in radical form.
10. $(-34)^{4 / 9}$
11. $41^{7 / 4}$

In Exercises 12-17, evaluate the expression.
12. $(-128)^{3 / 7}$
13. $(-25)^{5 / 2}$
14. $1000^{4 / 3}$
15. $\left(\frac{1}{125}\right)^{2 / 3}$
16. $(343)^{-1 / 3}$
17. $\left(\frac{1}{64}\right)^{3 / 2}$
18. The radius of a sphere is given by the equation $r=\left(\frac{3 V}{4 \pi}\right)^{1 / 3}$, where V is the volume of the sphere. Find the radius, to the nearest centimeter, of a sphere that has a volume of 268 cubic centimeters. Use 3.14 for π.
19. Use the formula $r=\left(\frac{F}{P}\right)^{1 / n}-1$ to find the annual inflation rate to the nearest tenth of a percent. A rare coin increases in value from $\$ 0.25$ to $\$ 1.50$ over a period of 30 years.

