Ch. 5 Rational Exponents & Radical Functions

5.0 Properties of Exponents and Radicals (not in the book)

5 Core Concept

Zero Exponent

Words For any nonzero number a, $a^0 = 1$. The power 0^0 is undefined.

Numbers $4^0 = 1$

Algebra
$$a^0 = 1$$
, where $a \neq 0$

Negative Exponents

Words For any integer n and any nonzero number a, a^{-n} is the reciprocal of a^n .

Numbers $4^{-2} = \frac{1}{4^2}$

Algebra
$$a^{-n} = \frac{1}{a^n}$$
, where $a \neq 0$

CONCEPT 1: USING ZERO & NEGATIVE EXPONENTS

1. Evaluate each expression. a) 6°

- b) $(2)^{-4}$
- c) $\frac{-5^0}{2^{-2}}$

- 2. Evaluate each expression. a) $(-9)^0$
- b) $(-3)^{-3}$
- c) $\frac{3^{-2}x^{-5}}{y^0}$.

5 Core Concept

Product of Powers Property

Let a be a real number, and let m and n be integers.

Words To multiply powers with the same base, add their exponents.

Numbers $4^6 \cdot 4^3 = 4^{6+3} = 4^9$ Algebra $a^m \cdot a^n = a^{m+n}$

Quotient of Powers Property

Let a be a nonzero real number, and let m and n be integers.

Words To divide powers with the same base, subtract their exponents.

Numbers $\frac{4^6}{4^3} = 4^{6-3} = 4^3$ **Algebra** $\frac{a^m}{a^n} = a^{m-n}$, where $a \neq 0$

Power of a Power Property

Let a be a real number, and let m and n be integers.

Words To find a power of a power, multiply the exponents.

Numbers $(4^6)^3 = 4^6 \cdot {}^3 = 4^{18}$ Algebra $(a^m)^n = a^{mn}$

CONCEPT 2: USING PROPERTIES OF EXPONENTS

- 3. Simplify each expression. Write your answer using only positive exponents.
- a) $3^2 \cdot 3^6$

b) $\frac{(-4)^2}{(-4)^7}$

c) $(z^4)^{-3}$

4. Simplify each expression. Write your answer using only positive exponents.

a)
$$10^4 \cdot 10^{-6}$$

b)
$$\frac{(-5)^8}{(-5)^4}$$

c)
$$x^9 \cdot x^{-9}$$

d)
$$\frac{y^6}{v^7}$$

e)
$$(6^{-2})^{-1}$$

f)
$$(z^{12})^5$$

Core Concept

Power of a Product Property

Let a and b be real numbers, and let m be an integer.

Words To find a power of a product, find the power of each factor and multiply.

Numbers
$$(3 \cdot 2)^5 = 3^5 \cdot 2^5$$

Algebra
$$(ab)^m = a^m b^m$$

Power of a Quotient Property

Let a and b be real numbers with $b \neq 0$, and let m be an integer.

Words To find the power of a quotient, find the power of the numerator and the power of the denominator and divide.

Numbers
$$\left(\frac{3}{2}\right)^5 = \frac{3^5}{2^5}$$

$$\left(\frac{3}{2}\right)^5 = \frac{3^5}{2^5}$$

Algebra
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
, where $b \neq 0$

**CONCEPT 3: USING PROPERTIES OF EXPONENTS **

5. Simplify each expression. Write your answer using only positive exponents.

a)
$$(-1.5y)^2$$

b)
$$\left(\frac{a}{-10}\right)^3$$
 c) $\left(\frac{3d}{2}\right)^4$

c)
$$\left(\frac{3d}{2}\right)^4$$

d)
$$\left(\frac{2x}{3}\right)^{-5}$$

6. Simplify each expression. Write your answer using only positive exponents.

a)
$$(10y)^{-3}$$

b)
$$\left(\frac{4}{n}\right)^5$$

b)
$$\left(\frac{4}{n}\right)^5$$
 c) $\left(\frac{1}{2k^2}\right)^4$ d) $\left(\frac{6c}{7}\right)^{-2}$

d)
$$\left(\frac{6c}{7}\right)^{-2}$$

5.1: nth Roots and Rational Exponents (pg. 238 - 240)

 $\sqrt[n]{a} = a^{1/n}$

Definition of rational exponent

Core Concept

Real nth Roots of a

Let n be an integer (n > 1) and let a be a real number.

n is an even integer.

n is an odd integer.

a < 0 No real nth roots

a < 0 One real nth root: $\sqrt[n]{a} = a^{1/n}$

a = 0 One real nth root: $\sqrt[n]{0} = 0$

a = 0 One real nth root: $\sqrt[n]{0} = 0$

a > 0 Two real nth roots: $\pm \sqrt[n]{a} = \pm a^{1/n}$ a > 0 One real nth root: $\sqrt[n]{a} = a^{1/n}$

CONCEPT 1: FINDING Nth ROOTS

Find the indicated real nth root(s) of a.

1. a)
$$n = 3$$
, $a = -216$

b)
$$n = 4, a = 81$$

2. a)
$$n = 5$$
, $a = -243$

b)
$$n = 8, a = 256$$

CONCEPT 2: PRODUCTS OF SQUARE ROOTS

Core Concept

Product Property of Square Roots

Words The square root of a product equals the product of the square roots of the factors.

Numbers $\sqrt{9 \cdot 5} = \sqrt{9} \cdot \sqrt{5} = 3\sqrt{5}$

Algebra $\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$, where $a, b \ge 0$

3. Simplify the expression.

a)
$$\sqrt{24}$$

b)
$$-\sqrt{80}$$

c)
$$\sqrt{49x^3}$$

d)
$$\sqrt{75x^5}$$

4. Simplify the expression.

a)
$$\sqrt{96}$$

b)
$$-\sqrt{50}$$

c)
$$\sqrt{12x^4}$$

d)
$$\sqrt{\frac{4x^2}{64}}$$

f)
$$\sqrt[3]{16x^4}$$

g)
$$\sqrt[3]{\frac{a}{-27}}$$

h)
$$\sqrt[3]{\frac{25c^7d^3}{64}}$$

5 Core Concept

Rational Exponents

Let $a^{1/n}$ be an nth root of a, and let m be a positive integer.

$$a^{m/n} = (a^{1/n})^m = (\sqrt[n]{a})^m$$

$$a^{-m/n} = \frac{1}{a^{m/n}} = \frac{1}{(a^{1/n})^m} = \frac{1}{(\sqrt[n]{a})^m}, a \neq 0$$

CONCEPT 3: EVALUATING EXPRESSIONS WITH RATIONAL EXPONENTS

5. Evaluate each expression *without* using a calculator.

a)
$$16^{\frac{3}{2}}$$

b)
$$32^{\frac{-3}{5}}$$

$$5.1 - 5.6$$

6. a)
$$64^{\frac{4}{3}}$$

b)
$$16^{\frac{-5}{4}}$$

CONCEPT 3: SOLVING EQUATIONS USING Nth ROOTS

7. Find the real solutions

a)
$$4x^5 = 128$$

b)
$$(x-3)^4 = 21$$

8. a)
$$5x^3 = 320$$

b)
$$(x+3)^4 = 24$$

5.2: Properties of Rational Exponents and Radicals (pg. 244 - 247)

ore Concept

Properties of Rational Exponents

Let a and b be real numbers and let m and n be rational numbers, such that the quantities in each property are real numbers.

Property Name	Definition	Example	
Product of Powers	$a^m \cdot a^n = a^{m+n}$	$5^{1/2} \cdot 5^{3/2} = 5^{(1/2 + 3/2)} = 5^2 = 25$	
Power of a Power	$(a^m)^n = a^{mn}$	$(3^{5/2})^2 = 3^{(5/2 \cdot 2)} = 3^5 = 243$	
Power of a Product	$(ab)^m = a^m b^m$	$(16 \cdot 9)^{1/2} = 16^{1/2} \cdot 9^{1/2} = 4 \cdot 3 = 12$	
Negative Exponent	$a^{-m} = \frac{1}{a^m}, a \neq 0$	$36^{-1/2} = \frac{1}{36^{1/2}} = \frac{1}{6}$	
Zero Exponent	$a^0 = 1, a \neq 0$	$213^0 = 1$	
Quotient of Powers	$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$	$\frac{4^{5/2}}{4^{1/2}} = 4^{(5/2 - 1/2)} = 4^2 = 16$	
Power of a Quotient	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$	$\left(\frac{27}{64}\right)^{1/3} = \frac{27^{1/3}}{64^{1/3}} = \frac{3}{4}$	

$$5.1 - 5.6$$

CONCEPT 1: USING PROPERTIES OF EXPONENTS

- 1. Use the properties of rational exponents to simplify the expression.
- a) $7^{\frac{1}{4}} \cdot 7^{\frac{1}{2}}$
- b) $\left(6^{\frac{1}{2}} \cdot 4^{\frac{1}{3}}\right)^2$
- c) $(4^5 \cdot 3^5)^{-\frac{1}{5}}$
- d) $\frac{125}{125^{\frac{1}{3}}}$
- e) $\left(\frac{48\frac{1}{3}}{\frac{1}{63}}\right)^2$
- 2. Use the properties of rational exponents to simplify the expression.
- a) $2^{\frac{3}{4}} \cdot 2^{\frac{1}{2}}$
- b) $\left(5^{\frac{1}{3}} \cdot 7^{\frac{1}{4}}\right)^3$
- c) $(2^4 \cdot 8^4)^{-\frac{1}{4}}$
- d) $\frac{3}{3^{\frac{1}{4}}}$
- e) $\left(\frac{20^{\frac{1}{2}}}{\frac{1}{5^{\frac{1}{2}}}}\right)^3$

5 Core Concept

Properties of Radicals

Let a and b be real numbers and let n be an integer greater than 1.

Property Name	Definition	Example
Product Property	$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	$\sqrt[3]{4} \cdot \sqrt[3]{2} = \sqrt[3]{8} = 2$
Quotient Property	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}, b \neq 0$	$\frac{\sqrt[4]{162}}{\sqrt[4]{2}} = \sqrt[4]{\frac{162}{2}} = \sqrt[4]{81} = 3$

CONCEPT 2: USING PROPERTIES OF RADICALS

- 3. Use the properties of rational exponents to simplify the expression.
- a) $\sqrt[3]{12} \cdot \sqrt[3]{18}$

4. a) $\sqrt[3]{4} \cdot \sqrt[3]{128}$

b) $\frac{\sqrt[5]{192}}{\sqrt[5]{6}}$

CONCEPT 3: RADICALS IN SIMPLEST FORM

- 5. Write the expression in simplest form.
- a) $\sqrt[3]{135}$

b) $\frac{\sqrt[5]{7}}{\sqrt[5]{8}}$

6. a) $\sqrt[3]{500}$

b) $\frac{\sqrt[4]{19}}{\sqrt[4]{4}}$

CONCEPT 4: WRITING A RADICAL EXPRESSION IN SIMPLEST FORM $\frac{3}{\sqrt{7}-2}$ in simplest form. 8. Write $\frac{3}{\sqrt{7}-2}$ in simplest form.

7. Write $\frac{2}{5+\sqrt{3}}$ in simplest form.

CONCEPT 5: ADDING AND SUBTRACTING LIKE RADICALS AND ROOTS

9. Simplify each expression.

a)
$$\sqrt[4]{10} + 7\sqrt[4]{10}$$

b)
$$2\left(8^{\frac{1}{5}}\right) + 10\left(8^{\frac{1}{5}}\right)$$

c)
$$\sqrt[3]{54} - \sqrt[3]{2}$$

10.a)
$$\sqrt[6]{17} + 9\sqrt[6]{17}$$

b)
$$5\left(7^{\frac{1}{3}}\right) + 6\left(7^{\frac{1}{3}}\right)$$

c)
$$\sqrt[4]{48} - \sqrt[4]{3}$$

CONCEPT 6: SIMPLIFYING VARIABLE EXPRESSIONS

11. Simplify each expression.

a)
$$\sqrt[3]{64y^6}$$

b)
$$\sqrt[4]{\frac{x^4}{y^8}}$$

12. a)
$$\sqrt[3]{27y^{12}}$$

b)
$$\sqrt[4]{\frac{x^4}{y^{16}}}$$

CONCEPT 7: WRITING VARIABLE EXPRESSIONS IN SIMPLEST FORM

13. Write each expression in simplest form. Assume all variables are positive.

a)
$$\sqrt[5]{4a^8b^{14}c^5}$$

b)
$$\frac{x}{\sqrt[3]{y^8}}$$

c)
$$\frac{14x^2y^{-\frac{1}{3}}}{2x^{\frac{3}{4}}z^{\frac{1}{6}}}$$

5.1 - 5.6

14. a)
$$\sqrt[3]{2a^{13}b^3c^8}$$

b)
$$\frac{x^2}{\sqrt[3]{y^{13}}}$$

c)
$$\frac{16xy^{\frac{1}{3}}z}{\frac{2}{8x^{\frac{5}{3}}y^{\frac{5}{6}}z^{-4}}}$$

CONCEPT 8: ADDING AND SUBTRACTING VARIABLE EXPRESSIONS

15. Perform each indicated operation. Assume all variables are positive.

a)
$$5\sqrt{y} + 6\sqrt{y}$$

b)
$$12\sqrt[3]{2z^5} - z\sqrt[3]{54z^2}$$

16. Perform each indicated operation. Assume all variables are positive.

a)
$$6\sqrt[3]{x} + 2\sqrt[3]{x}$$

b)
$$16\sqrt[4]{3z^6} - z\sqrt[4]{48z^2}$$

5.3: Graphing Radical Functions (pg. 252 - 255)

ore Concept

Parent Functions for Square Root and Cube Root Functions

The parent function for the family of square root functions is $f(x) = \sqrt{x}$.

Domain: $x \ge 0$, Range: $y \ge 0$

The parent function for the family of cube root functions is $f(x) = \sqrt[3]{x}$.

Domain and range: All real numbers

CONCEPT 1: GRAPHING RADICAL FUNCTIONS

1. Graph each function. Identify the domain and range of each function. (Hint: Make a table of five values & sketch the graph)

$$f(x) = \sqrt{\frac{1}{4}x}$$

$$2. g(x) = -3\sqrt[3]{x}$$

#3-4, graph each function. Then, identify the domain and range.

$$3. f(x) = \sqrt{\frac{1}{3}x}$$

$$4. g(x) = -2\sqrt[3]{x}$$

ore Concept

Transformation	f(x) Notation	Examples	
Horizontal Translation	- t	$g(x) = \sqrt{x-2}$	2 units right
Graph shifts left or right.	f(x-h)	$g(x) = \sqrt{x+3}$	3 units left
Vertical Translation		$g(x) = \sqrt{x} + 7$	7 units up
Graph shifts up or down.	f(x) + k	$g(x) = \sqrt{x} - 1$	1 unit down
Reflection	f(-x)	$g(x) = \sqrt{-x}$	in the y-axis
Graph flips over x- or y-axis.	-f(x)	$g(x) = -\sqrt{x}$	in the x-axis
Horizontal Stretch or Shrink Graph stretches away from		$g(x) = \sqrt{3x}$	shrink by a factor of $\frac{1}{3}$
or shrinks toward y-axis.	f(ax)	$g(x) = \sqrt{\frac{1}{2}x}$	stretch by a factor of 2
Vertical Stretch or Shrink		$g(x) = 4\sqrt{x}$	stretch by a
Graph stretches away from	a f(x)		factor of 4
or shrinks toward x-axis.	<i>a</i> • <i>f</i> (<i>x</i>)	$g(x) = \frac{1}{5}\sqrt{x}$	shrink by a factor of $\frac{1}{5}$

^{**}CONCEPT 2: TRANSFORMING RADICAL FUNCTIONS**

5. Describe the transformation of f represented by g. Then graph each function.

a)
$$f(x) = \sqrt{x}$$
, $g(x) = \sqrt{x-3} + 4$

b)
$$f(x) = \sqrt[3]{x}$$
, $g(x) = \sqrt[3]{-8x}$

6. Describe the transformation of f represented by g. Then graph each function.

a)
$$f(x) = \sqrt{x}$$
, $g(x) = \sqrt{x+2} - 3$

b)
$$f(x) = \sqrt[3]{x}$$
, $g(x) = -\sqrt[3]{2x}$

CONCEPT 3: WRITING A TRANSFORMED RADICAL FUNCTION

7. Let the graph be a horizontal shrink by a factor of $\frac{1}{6}$ followed by a translation 3 units to the left of the graph of $f(x) = \sqrt[3]{x}$. Write the rule for g.

8. Let the graph be a horizontal stretch by a factor of 3 followed by a translation 6 units to the right of the graph of $f(x) = \sqrt[3]{x}$. Write the rule for g.

5.4: Solving Radical Equations and Inequalities (pg. 262 - 265)

5 Core Concept

Solving Radical Equations

To solve a radical equation, follow these steps:

- Step 1 Isolate the radical on one side of the equation, if necessary.
- Step 2 Raise each side of the equation to the same exponent to eliminate the radical and obtain a linear, quadratic, or other polynomial equation.
- Step 3 Solve the resulting equation using techniques you learned in previous chapters. Check your solution.

CONCEPT 1: SOLVING RADICAL EQUATIONS

1. Solve (a)
$$2\sqrt{x+1} = 4$$

b)
$$\sqrt[3]{2x-9} - 1 = 2$$
.

2. Solve the equations.

a)
$$2\sqrt{x+2} = 8$$

b)
$$\sqrt[3]{2x-5}-2=3$$

CONCEPT 2: SOLVING AN EQUATION WITH AN EXTRANEOUS SOLUTION

Extraneous solution: a solution that emerges from the solving of a problem but is not valid.

3. Solve
$$x + 1 = \sqrt{7x + 15}$$

4. Solve
$$\sqrt{2x + 7} = x - 4$$

CONCEPT 3: SOLVING AN EQUATION WITH TWO RADICALS

5. Solve
$$\sqrt{x+2} + 1 = \sqrt{3-x}$$

6.
$$\sqrt{x+6} - 2 = \sqrt{x-2}$$

CONCEPT 4: SOLVING AN EQUATION WITH A RATIONAL EXPONENT

7. Solve
$$(2x)^{\frac{3}{4}} + 2 = 10$$

$$8. (3x)^{\frac{2}{3}} - 2 = 34$$

CONCEPT 5: SOLVING AN EQUATION WITH A RATIONAL EXPONENT

10. Solve
$$(x + 30)^{\frac{1}{2}} = x$$

11.
$$(x + 12)^{\frac{1}{2}} = x$$

CONCEPT 6: SOLVING A RADICAL INEQUALITY

12. Solve
$$3\sqrt{x-1} \le 12$$

13. Solve
$$3\sqrt{x} - 4 \le 8$$

5.6: Inverse Functions (pg. 276 - 280)

Inverse Functions: Functions that undo each other. The inverse function is also a reflection on the line y = x

CONCEPT 1: WRITING A FORMULA FOR THE INPUT OF A FUNCTION

- 1. Let f(x) = 2x + 3
- a) Solve y = f(x) for x

b) Find the input when the output is -7

- 2. Let f(x) = 3x 5
- a) Solve y = f(x) for x b) Find the input when the output is -11

CONCEPT 2: FINDING THE INVERSE OF A LINEAR FUNCTION

- 3. Find the inverse of f(x) = 3x 1
- 4. Find the inverse of f(x) = 2x + 8

CONCEPT 3: FINDING THE INVERSE OF A QUADRATIC FUNCTION

5. Find the inverse of $f(x) = x^2$, $x \ge 0$. Then graph the function and its inverse. (If for the doman of f were restricted to $x \ge 0$, then the inverse range would be $y \ge 0$)

6. Find the inverse of $f(x)=x^2-2, x\leq 0$. Then graph the function and its inverse. (If for the doman of f were restricted to $x\leq 0$, the inverse would be $y\leq 0$ or $g(x)=-\sqrt{x}$)

5 Core Concept

Horizontal Line Test

The inverse of a function f is also a function if and only if no horizontal line intersects the graph of f more than once.

Inverse is a function

Inverse is not a function

CONCEPT 4: FINDING THE INVERSE OF A CUBIC FUNCTION

10. Consider the function $f(x) = 2x^3 + 1$. Determine whether the inverse of f is a function. Then find the inverse.

11. Consider the function $f(x) = 3x^3 - 2$. Determine whether the inverse of f is a function. Then find the inverse.

CONCEPT 5: FINDING THE INVERSE OF A RADICAL FUNCTION

12. Consider the function $f(x) = 2\sqrt{x-3}$. Determine whether the inverse of f is a function. Then find the inverse.

13. Consider the function $f(x) = 3\sqrt{x+4}$. Determine whether the inverse of f is a function. Then find the inverse.

Inverse functions undo each other. So, when you evaluate a function for a specific input, then evaluate its inverse using the output, you obtain the original input. Let f and g be inverse functions. So, in general, f(g(x)) = x and g(f(x)) = x.

CONCEPT 6: VERIFYING FUNCTIONS ARE INVERSES

14. Verify that f(x) = 3x - 1 and $g(x) = \frac{x+1}{3}$ are inverse functions.

15. Verify that f(x) = 2x + 4 and $g(x) = \frac{x-4}{2}$ are inverse functions.