5.0

Practice A

In Exercises 1-6, evaluate the expression.

1.
$$(-3)^0$$

4.
$$(-5)^{-3}$$

5.
$$\frac{3^{-2}}{9^0}$$

6.
$$\frac{6^{-1}}{-5^0}$$

In Exercises 7–18, simplify the expression. Write your answer using only positive exponents.

7.
$$x^{-6}$$

8.
$$z^0$$

9.
$$7x^{-4}y^0$$

10.
$$12f^0g^{-9}$$

11.
$$\frac{3^{-2}a^0}{b^{-2}}$$

12.
$$\frac{6^0 t u^{-5}}{2^5}$$

13.
$$\frac{4^7}{4^4}$$

14.
$$\frac{(-3)^6}{(-3)^3}$$

15.
$$(-8)^3 \bullet (-8)^3$$

16.
$$7^{-4} \bullet 7^4$$

17.
$$(h^3)^4$$

18.
$$(t^{-2})^6$$

19. A camera lens magnifies an object 10^3 times. The length of an object is 10^{-4} centimeter. What is its magnified length?

In Exercises 20–22, simplify the expression. Write your answer using only positive exponents.

20.
$$(-2y)^5$$

21.
$$(3d)^{-3}$$

22.
$$\left(\frac{5}{b}\right)^{-3}$$

In Exercises 23 and 24, simplify the expression. Write your answer using only positive exponents.

23.
$$\left(\frac{3x^2y^{-3}}{2x^{-3}y^2}\right)^3$$

24.
$$\left(\frac{-6a^{-9}b^5}{2a^2b^{-4}}\right)^4$$

In Exercises 25 and 26, evaluate the expression. Write your answer in scientific notation and standard form.

25.
$$(1.2 \times 10^7)(4 \times 10^{-2})$$

26.
$$\frac{3.9 \times 10^8}{1.3 \times 10^3}$$

5.0 Practice B

In Exercises 1-6, evaluate the expression.

2.
$$(-5)^{-4}$$

3.
$$\frac{7^{-1}}{-8^0}$$

4.
$$\frac{8^{-1}}{(-4)^0}$$

$$5. \quad \frac{-2^{-4}}{3^{-3}}$$

6.
$$\frac{6^{-2}}{(-1)^{-4}}$$

In Exercises 7–21, simplify the expression. Write your answer using only positive exponents.

7.
$$\frac{7^{-2}m^0}{n^{-4}}$$

8.
$$\frac{\left(-9\right)^0 j^{-1} k^{-4}}{2^0}$$

$$9. \quad \frac{5^{-2}w^0}{v^{-10}}$$

$$10. \quad \frac{t^{-5}}{8^{-2}s^{-3}}$$

11.
$$\frac{3^{-2}a^{-1}}{9^{-1}b^{-2}c^0}$$

12.
$$\frac{17x^0y^{-8}}{4^{-2}z^{-6}}$$

13.
$$(p^6)^3$$

14.
$$(q^{-4})^5$$

15.
$$5^3 \cdot 5^{-7}$$

16.
$$-4 \bullet (-4)^{-2}$$

17.
$$\frac{x^7}{x^4} \bullet x^2$$

18.
$$\frac{v^5 \cdot v^3}{v^2}$$

19.
$$(-8t^2)^3$$

20.
$$\left(-\frac{q^4}{5}\right)^{-3}$$

21.
$$\left(\frac{1}{3h^5}\right)^{-4}$$

In Exercises 22 and 23, simplify the expression. Write your answer using only positive exponents.

22.
$$\left(\frac{5x^{-4}y^3}{2x^2y^0}\right)^2 \bullet \left(\frac{4xy}{y^3}\right)^2$$

23.
$$\left(\frac{2a^0b^{-4}}{b^3}\right)^4 \bullet \left(\frac{a^3b^{-2}}{3b^4a^{-4}}\right)^3$$

In Exercises 24 and 25, evaluate the expression. Write your answer in scientific notation and standard form.

24.
$$(4.3 \times 10^{-4})(6 \times 10^{7})$$

25.
$$\frac{1.2 \times 10^{-3}}{4.8 \times 10^{-10}}$$

26. Find x and y when $b^x b^y = b^8$ and $b^{4x} b^{-2y} = b^2$. Explain how you found your answer.