Chapter 2 Quadratic Functions

2.1: Transformations of Quadratic Functions (pg. 48-51)

Writing Transformations of Quadratic Functions

The lowest point on a parabola that opens up or the highest point on a parabola that opens down is the vertex. The vertex form of a quadratic function is $f(x)-a(x-h)^{2}+k$, where $a \neq 0$ and the vertex is (h, k).

C) Core Concept

Horizontal Translations

$$
\begin{gathered}
f(x)-x^{2} \\
f(x-h)-(x-h)^{2} \\
y-(x-h)^{2}, \\
\text { - shifts left when } h<0 \\
\text { - shifts right when } h>0
\end{gathered}
$$

Vertical Translations

$$
f(x)=x^{2}
$$

$$
f(x)+k-x^{2}+k
$$

$$
\underset{\substack{y-x^{2}+k_{r} \\ k>0}}{\substack{x \\ k<x^{2}+k}}
$$

- shifts down when $k<0$
- shifts up when $k>0$

CONCEPT 1: TRANSLATIONS OF A QUADRATIC FUNCTION

1. Describe the transformation of $f(x)=x^{2}$ represented by $g(x)=(x+4)^{2}-1$. Then graph each function. (tip: describe the transformation before your graph.)

2. Describe the transformation of $f(x)=x^{2}$ represented by $h(x)=(x-1)^{2}+2$. Then graph each function.

G) Core Concept

$$
\begin{aligned}
& \text { Reflections in the } \boldsymbol{x} \text {-Axis } \\
& \qquad \begin{array}{l}
f(x)-x^{2} \\
-f(x)--\left(x^{2}\right)--x^{2}
\end{array} \\
& \text { flips over the } x \text {-axis }
\end{aligned}
$$

Horizontal Stretches and Shrinks

$f(x)=x^{2}$
$f(a x)=(a x)^{2}$
$y=(a x)^{2}$,

- horizontal stretch (away from y-axis) when $0<a<1$
- horizontal shrink (toward y-axis) when $a>1$

Reflections in the \boldsymbol{y}-Axis

$f(x)-x^{2}$
$f(-x)=(-x)^{2}=x^{2}$

$y-x^{2}$ is its own reflection in the y-axis.

Vertical Stretches and Shrinks
$f(x)=x^{2}$
$a \cdot f(x)=a x^{2}$
$y=a x^{2}$,

- vertical stretch (away from x-axis) when $a>1$
- vertical shrink (toward x-axis) when $0<a<1$
CONCEPT 2: TRANSFORMATIONS OF QUADRATIC FUNCTIONS

3. Describe the transformation of $f(x)=x^{2}$ represented by g. Then graph each function.
a. $g(x)=-\frac{1}{2} x^{2}$
b. $g(x)=(2 x)^{2}+1$

4. Describe the transformation of $f(x)=x^{2}$ represented by h. Then graph each function.
a. $h(x)=-3 x^{2}$
b. $h(x)=\left(\frac{1}{4} x\right)^{2}-2$

CONCEPT 3: WRITING A TRANSFORMED QUADRATIC FUNCTION

5. Let the graph of g be a vertical stretch by a factor of 2 and a reflection in the x-axis, followed by a translation 3 units down of the graph of $f(x)=x^{2}$. Write a rule for g and identify the vertex.
6. Let the graph of g be a horizontal shrink by a factor of $\frac{1}{3}$ and a reflection in the y-axis, followed by a translation 2 units up of the graph of $f(x)=x^{2}$. Write a rule for g and identify the vertex.
CONCEPT 4: WRITING OTHER TRANSFORMED QUADRATIC FUNCTIONS
7. Let the graph of g be a translation 3 units right and 2 units up, followed by a reflection in the y-axis of the graph of $f(x)=x^{2}-5 x$. Write a rule for g.
8. Let the graph of g be a translation 4 units left and 1 unit down, followed by a reflection in the y-axis of the graph of $f(x)=2 x^{2}+x$. Write a rule for g.
2.2: Characteristics of Quadratic Functions (pg. 56-60)

Exploring Properties of Parabolas

An axis of symmetry is a line that divides a parabola into mirror images and passes through the vertex. Because the vertex of $f(x)=a(x-h)^{2}+k$ is (h, k), the axis of symmetry is the vertical line $x=h$.

** CONCEPT 1: GRAPHING VERTEX FORM WITH RELATION TO SYMMETRY**

1. $\operatorname{Graph} f(x)=-2(x+3)^{2}+4$. Label the vertex and axis of symmetry.

2. $\operatorname{Graph} f(x)=0.5(x+4)^{2}-2$. Label the vertex and axis of symmetry.

G) Core Concept

Properties of the Graph of $f(x)=a x^{2}+b x+c$
$y=a x^{2}+b x+c, a>0 \quad y-a x^{2}+b x+c, a<0$

- The parabola opens up when $a>0$ and opens down when $a<0$.
- The graph is narrower than the graph of $f(x)-x^{2}$ when $|a|>1$ and wider when $|a|<1$.
- The axis of symmetry is $x--\frac{b}{2 a}$ and the vertex is $\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right)$.
- The y-intercept is c. So, the point $(0, c)$ is on the parabola.
** CONCEPT 2: GRAPHING QUADRATICS IN STANDARD FORM**

3. $\operatorname{Graph} f(x)=3 x^{2}-6 x+1$. Label the vertex and the axis of symmetry.

4. $\operatorname{Graph} f(x)=0.5 x^{2}-4 x-2$. Label the vertex and axis of symmetry.

G) Core Concept

Minimum and Maximum Values
For the quadratic function $f(x)-a x^{2}+b x+c$, the y-coordinate of the vertex is the minimum value of the function when $a>0$ and the maximum value when $a<0$.

- Minimum value: $f\left(-\frac{b}{2 a}\right)$
- Maximum value: $f\left(-\frac{b}{2 a}\right)$
- Domain: All real numbers
- Domain: All real numbers
$>$
- Range: $\mathbf{y} \geq f\left(-\frac{b}{2 a}\right)$
- Range: $\mathrm{y} \leq f\left(-\frac{b}{2 a}\right)$
- Decreasing to the left of $x--\frac{b}{2 a}$
- Increasing to the left of $x--\frac{b}{2 a}$
- Increasing to the right of $x--\frac{b}{2 a}$
- Decreasing to the right of $x--\frac{b}{2 a}$

** CONCEPT 3: FINDING A MAXIMUM OR MINIMUM VALUE**

5. Find the minimum value or maximum value of $f(x)=\frac{1}{2} x^{2}-2 x-1$. Describe the domain and range of the function.
6. Find the minimum and maximum value of $f(x)=2 x^{2}+8 x-6$. Describe the domain and range of the function.

G. Core Concept

Properties of the Graph of $f(x)=a(x-p)(x-q)$

- Because $f(p)-0$ and $f(q)-0, p$ and q are the x-intercepts of the graph of the function.
- The axis of symmetry is halfway between ($p, 0$) and ($q, 0$). So, the axis of symmetry is $x-\frac{p+q}{2}$
- The parabola opens up when $a>0$ and opens down when $a<0$.

** CONCEPT 4: GRAPHING A QUADRATIC IN INTERCEPT FORM**

7. $\operatorname{Graph} f(x)=-2(x+3)(x-1)$. Label the x-intercepts, vertex, and axis of symmetry.

8. $\operatorname{Graph} f(x)=-\frac{1}{3}(x-4)(x+2)$. Label the x-intercepts, vertex, and axis of symmetry.

** CONCEPT 5: WORD PROBLEMS**

9. The parabola shows the path of your first golf shot, where x is the horizontal distance (in yards) and y is the corresponding height (in yards). The path of your second shot can be modeled by the function $f(x)=-0.02 x(x-80)$. Which shot travels farther before hitting the ground? Which travels higher?

10. Use the graph from the last problem. The path of your third golf shot is $g(x)=-0.03 x(x-40)$. Does your first or third shot travel farther before hitting the ground? Which travels higher.

2.4: Modeling with Quadratic Functions (pg. 76-79)

Core Concept

Writing Quadratic Equations
Given a point and the vertex (h, k)

Given a point and x-intercepts p and q

Given three points

$$
\begin{aligned}
& \text { Use vertex form: } \\
& \qquad y-a(x-h)^{2}+k
\end{aligned}
$$

Use intercept form:

$$
y=a(x-p)(x-q)
$$

Write and solve a system of three equations in three variables.
** CONCEPT 1: GIVEN AN EQUATION \& A POINT**

1. The graph shows the parabolic path of a performer who is shot out of cannon, where y is the height (in feet) and x is the horizontal distance traveled (in feet). Write an equation of the parabola. The performer lands in a net 90 feet from the cannon. What is the height of the net to the nearest foot?

2. The graph shows the parabolic path of a performer who is shot out of cannon, where y is the height (in feet) and x is the horizontal distance traveled (in feet). Write an equation of the parabola. The performer lands in a net 60 feet from the cannon. What is the height of the net to the nearest foot?

** CONCEPT 2: GIVEN A POINT \& X-INTERCEPTS**
3. A meteorologist creates a parabola to predict the temperature tomorrow, where x is the number of hours after midnight and y is the temperature (in degrees Celsius). Write a function f that models the temperature over time. What is the coldest temperature?

4. A meteorologist creates a parabola to predict the temperature tomorrow, where x is the number of hours after midnight and y is the temperature (in degrees Celsius). Write a function f that models the temperature over time. What is the coldest temperature?

