Chapter 2 Quadratic Functions

2.1: Transformations of Quadratic Functions (pg. 48 - 51)

Writing Transformations of Quadratic Functions

The lowest point on a parabola that opens up or the highest point on a parabola that opens down is the **vertex**. The **vertex form** of a quadratic function is $f(x) = a(x - h)^2 + k$, where $a \neq 0$ and the vertex is (h, k).

****CONCEPT 1: TRANSLATIONS OF A QUADRATIC FUNCTION****

1. Describe the transformation of $f(x) = x^2$ represented by $g(x) = (x + 4)^2 - 1$. Then graph each function. (tip: describe the transformation before your graph.)

2. Describe the transformation of $f(x) = x^2$ represented by $h(x) = (x - 1)^2 + 2$. Then graph each function.

_	_	_	_	_	_	_	_	_	_	_		_	_		_	_	_	_	_	_	_
										- 4											
-	_		_	-		_	-		_		_	_	-	_	_	-	-			-	_
\vdash	-			-	-	-						-		-	-	-	-	-			
	-		-	-		_	-		_			_		_	_	-	-			-	_
	_			-			-				_		_			-	-	-		_	_
	_											_		_							
-																					
+	_	_				_						_	_	_	_	_			_		-
+		_							_												•
+	_	_	_			_	_	_	_		_		_	_	_	_	_		_	_	•
+																					•
-																					•
+																					•
+																					•
•																					•
•																					•
•																					•
▲																					-
▲																					-
▲																					
+																					→
+																					→

****CONCEPT 2: TRANSFORMATIONS OF QUADRATIC FUNCTIONS****

3. Describe the transformation of $f(x) = x^2$ represented by g. Then graph each function.

a.
$$g(x) = -\frac{1}{2}x^2$$

b. $g(x) = (2x)^2 + 1$

4. Describe the transformation of $f(x) = x^2$ represented by h. Then graph each function. a. $h(x) = -3x^2$ b. $h(x) = \left(\frac{1}{4}x\right)^2 - 2$

	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_
										1											
_																					
	_						_				_								_		
	-	-	-			-	-			-	-	-	-	_	_	-	-	-	-	_	_
																			_		
_																					
+	-		-			-	-			-	_	-	-	_	_		-	-	-	_	-
_														_	_						_
	_	_					_	_			_		_						_		
	-					-	-			-			-					-	-		_
	_						_												_		
	_																				
										1	7										

****CONCEPT 3: WRITING A TRANSFORMED QUADRATIC FUNCTION****

5. Let the graph of g be a vertical stretch by a factor of 2 and a reflection in the x-axis, followed by a translation 3 units down of the graph of $f(x) = x^2$. Write a rule for g and identify the vertex.

6. Let the graph of g be a horizontal shrink by a factor of $\frac{1}{3}$ and a reflection in the y-axis, followed by a translation 2 units up of the graph of $f(x) = x^2$. Write a rule for g and identify the vertex.

****CONCEPT 4: WRITING OTHER TRANSFORMED QUADRATIC FUNCTIONS****

7. Let the graph of g be a translation 3 units right and 2 units up, followed by a reflection in the y-axis of the graph of $f(x) = x^2 - 5x$. Write a rule for g.

8. Let the graph of g be a translation 4 units left and 1 unit down, followed by a reflection in the y-axis of the graph of $f(x) = 2x^2 + x$. Write a rule for g.

2.2: Characteristics of Quadratic Functions (pg. 56-60)

Exploring Properties of Parabolas

An **axis of symmetry** is a line that divides a parabola into mirror images and passes through the vertex. Because the vertex of $f(x) = a(x - h)^2 + k$ is (h, k), the axis of symmetry is the vertical line x = h.

**** CONCEPT 1: GRAPHING VERTEX FORM WITH RELATION TO SYMMETRY**** 1. Graph $f(x) = -2(x + 3)^2 + 4$. Label the vertex and axis of symmetry.

2. Graph $f(x) = 0.5(x + 4)^2 - 2$. Label the vertex and axis of symmetry.

Core Concept

** CONCEPT 2: GRAPHING QUADRATICS IN STANDARD FORM**

3. Graph $f(x) = 3x^2 - 6x + 1$. Label the vertex and the axis of symmetry.

4. Graph $f(x) = 0.5x^2 - 4x - 2$. Label the vertex and axis of symmetry.

** CONCEPT 3: FINDING A MAXIMUM OR MINIMUM VALUE**

5. Find the minimum value or maximum value of $f(x) = \frac{1}{2}x^2 - 2x - 1$. Describe the domain and range of the function.

6. Find the minimum and maximum value of $f(x) = 2x^2 + 8x - 6$. Describe the domain and range of the function.

🔄 Core Concept

Properties of the Graph of f(x) = a(x - p)(x - q)

- Because f(p) = 0 and f(q) = 0, p and q are the x-intercepts of the graph of the function.
 The axis of symmetry is halfway between
- The axis of symmetry is han way between (p, 0) and (q, 0). So, the axis of symmetry is $x = \frac{p+q}{2}$.
- The parabola opens up when a > 0 and opens down when a < 0.

** CONCEPT 4: GRAPHING A QUADRATIC IN INTERCEPT FORM**

(q, 0)

a(x-p)(x-q)

7. Graph f(x) = -2(x + 3)(x - 1). Label the x-intercepts, vertex, and axis of symmetry.

(p, 0)

												_									_
										-	•										
									-					-					-		-
			_	-												-	-	-	-	-	-
				-															_	_	-
	-	-	-	-					-					-					-	-	-
-																					
	_	_	-	-	-	-	-	_	_	-	-	-	_	_	-	-	-	-	-	-	┢
-																					•
-			_	_				_	_					_					_		•
-																			_		•
																				_	•
-																					•
																					-
																					-
																					-
																					-
																					-

8. Graph $f(x) = -\frac{1}{3}(x-4)(x+2)$. Label the x-intercepts, vertex, and axis of symmetry.

**** CONCEPT 5: WORD PROBLEMS****

9. The parabola shows the path of your first golf shot, where x is the horizontal distance (in yards) and y is the corresponding height (in yards). The path of your second shot can be modeled by the function f(x) = -0.02x(x - 80). Which shot travels farther before hitting the ground? Which travels higher?

10. Use the graph from the last problem. The path of your third golf shot is g(x) = -0.03x(x - 40). Does your first or third shot travel farther before hitting the ground? Which travels higher.

2.4: Modeling with Quadratic Functions (pg. 76-79)

**** CONCEPT 1: GIVEN AN EQUATION & A POINT****

1. The graph shows the parabolic path of a performer who is shot out of cannon, where y is the height (in feet) and x is the horizontal distance traveled (in feet). Write an equation of the parabola. The performer lands in a net 90 feet from the cannon. What is the height of the net to the nearest foot?

2. The graph shows the parabolic path of a performer who is shot out of cannon, where y is the height (in feet) and x is the horizontal distance traveled (in feet). Write an equation of the parabola. The performer lands in a net 60 feet from the cannon. What is the height of the net to the nearest foot?

** CONCEPT 2: GIVEN A POINT & X-INTERCEPTS**

3. A meteorologist creates a parabola to predict the temperature tomorrow, where x is the number of hours after midnight and y is the temperature (in degrees Celsius). Write a function f that models the temperature over time. What is the coldest temperature?

4. A meteorologist creates a parabola to predict the temperature tomorrow, where x is the number of hours after midnight and y is the temperature (in degrees Celsius). Write a function f that models the temperature over time. What is the coldest temperature?

